IDEAS home Printed from https://ideas.repec.org/a/col/000180/017722.html
   My bibliography  Save this article

Evaluación de la eficiencia de las empresas del sector carbón en Colombia

Author

Listed:
  • Tomás Fontalvo Herrera
  • José Morelos Gómez
  • Adel Mendoza Mendoza

Abstract

Este trabajo de investigación presenta un análisis de la eficiencia técnica de las empresas del sector carbón y sus derivados en Colombia, durante el periodo 2011-2014. Como fundamentación teórica se utilizaron los conceptos de análisis envolvente de datos (DEA), específicamente el modelo CCR-O, enfocado en salidas y en la técnica multivariada de análisis discriminante. Para el desarrollo de la investigación se realizó un estudio empírico racional, con un enfoque evaluativo, que permitió establecer una estructura DEA para valorar las eficiencias. Para esta investigación se trabajó con 14 grandes empresas del sector minero en Colombia; como fuente de información primaria se tomó la reportada por la Superintendencia de Sociedades en los respectivos anos. Con base en la estructura DEA, se valoraron las eficiencias de las empresas y se establecieron aquellas que se constituyeron en referentes de evaluación de las empresas ineficientes; seguidamente, se calcularon las proyecciones de las variables de salida que permiten que las empresas ineficientes alcancen las eficiencias de acuerdo con el modelo CCR-O enfocado en salidas. Por último, se utilizó la técnica análisis discriminante, que permitió validar la pertenencia de una empresa del sector a ser eficiente o no. La eficiencia promedio de las empresas bajo el modelo DEA en el periodo de estudio alcanzó un nivel alto, de 84,5 % y la técnica análisis discriminante indicó una validación del 80,3 %. Este trabajo aporta criterios a los responsables de la toma de decisiones para mejorar la eficiencia en el sector. ****** This research paper assesses the technical efficiency of Colombian companies mining coal and its derivatives during the 2011–2014 period. This study is theoretically grounded on concepts from data envelopment analysis (DEA), specifically the CCR-O model, focused on outputs and on multiple discriminant analysis, which is a multivariate technique. As part of research development, a rational empirical study was conducted using an evaluative approach to establish a DEA structure aimed at assessing efficiencies. Fourteen large mining companies in Colombia participated in this study, employing information reported by the Superintendence of Mining Companies for the corresponding period as a primary source of data. Based on the DEA structure, company efficiencies were assessed, and benchmarks for the evaluation of inefficient companies were established. Next, output variables were estimated to allow inefficient companies to reach the corresponding efficiency levels according to the output-based CCR-O model. Finally, the discriminant analysis technique was deployed to validate whether companies operating within the sector are susceptible to becoming more efficient or not. Average company efficiency under the DEA model during the study period reached a high level of 84.5 %, and the discriminant analysis technique indicated a validation of 80.3 %. This work provides criteria for decision makers to improve efficiency within the sector. ****** Este artigo de pesquisa apresenta uma análise da eficiencia técnica de empresas do setor de carvao e seus derivados na Colombia no período de 2011 a 2014. Como fundamentacao teórica, foram utilizados os conceitos de análise por envoltória de dados (DEA), especificamente o modelo CCR-O, com foco em saídas e na técnica de análise discriminante multivariada. Para o desenvolvimento da pesquisa, foi realizado um estudo empírico racional, com abordagem avaliativa, que permitiu estabelecer uma estrutura de DEA para valorar as eficiencias. Para este estudo, foram utilizadas catorze grandes empresas do setor de mineracao da Colombia; como fonte primária de informacao, foi considerada a que foi reportada pela Superintendencia de Sociedades nos respectivos períodos. Com base na estrutura da DEA, a eficiencia das empresas foi avaliada e foram estabelecidas marcas de referencia para a avaliacao de empresas ineficientes; em seguida, foram calculadas as projecoes das variáveis de saída que permitem que empresas ineficientes alcancem níveis de eficiencia de acordo com o modelo CCR-O com foco em saídas. Por fim, foi utilizada a técnica de análise discriminante, que permitiu validar que empresa pertinentes do setor sao suscetíveis a se tornarem eficientes ou nao. A eficiencia média das empresas sob o modelo DEA durante o período do estudo atingiu um alto nível de 84,5% e a técnica de análise discriminante indicou uma validacao de 80,3%. Este trabalho fornece critérios para que os tomadores de decisao melhorem a eficiencia no setor.

Suggested Citation

  • Tomás Fontalvo Herrera & José Morelos Gómez & Adel Mendoza Mendoza, 2019. "Evaluación de la eficiencia de las empresas del sector carbón en Colombia," Revista Facultad de Ciencias Económicas, Universidad Militar Nueva Granada, vol. 27(1), pages 43-56, February.
  • Handle: RePEc:col:000180:017722
    DOI: 10.18359/rfce.3027
    as

    Download full text from publisher

    File URL: https://doi.org/10.18359/rfce.3027
    Download Restriction: no

    File URL: https://libkey.io/10.18359/rfce.3027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anthony N. Rezitis & Maria A. Kalantzi, 2016. "Investigating Technical Efficiency and Its Determinants by Data Envelopment Analysis: An Application in the Greek Food and Beverages Manufacturing Industry," Agribusiness, John Wiley & Sons, Ltd., vol. 32(2), pages 254-271, April.
    2. Sangare, Saadatou & Maisonnave, Hélène, 2018. "Mining and petroleum boom and public spending policies in Niger: a dynamic computable general equilibrium analysis," Environment and Development Economics, Cambridge University Press, vol. 23(5), pages 580-590, October.
    3. Sepideh Kaffash & Marianna Marra, 2017. "Data envelopment analysis in financial services: a citations network analysis of banks, insurance companies and money market funds," Annals of Operations Research, Springer, vol. 253(1), pages 307-344, June.
    4. Tomás Fontalvo Herrera & José Morelos Gómez, 2012. "Evaluación de la gestión financiera: empresas del sector automotriz y actividades conexas en el Atlántico," Dimensión Empresarial, Universidad Autónoma del Caribe, December.
    5. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    6. Emmanuel Thanassoulis & Kristof Witte & Jill Johnes & Geraint Johnes & Giannis Karagiannis & Conceição S. Portela, 2016. "Applications of Data Envelopment Analysis in Education," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, chapter 0, pages 367-438, Springer.
    7. Jenkins, Larry & Anderson, Murray, 2003. "A multivariate statistical approach to reducing the number of variables in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 51-61, May.
    8. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    9. Guzmán, Isidoro & Escobar, Bernabé, 2011. "Cambios en productividad y creación de valor social en las cajas de ahorros españolas," El Trimestre Económico, Fondo de Cultura Económica, vol. 0(309), pages 235-253, enero-mar.
    10. Suzuki, Soushi & Nijkamp, Peter & Rietveld, Piet & Pels, Eric, 2010. "A distance friction minimization approach in data envelopment analysis: A comparative study on airport efficiency," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1104-1115, December.
    11. Hélène Maisonnave & S Sangare, 2018. "Mining and petroleum development and spending policies in Niger: A dynamic general calculable equilibrium analysis," Post-Print hal-02970311, HAL.
    12. José Morelos Gómez & Tomás José Fontalvo Herrera & Efraín De La Hoz Granadillo, 2018. "Behaviour of productivity indicators and financial resources in the field of extraction and exploitation of minerals in Colombia," International Journal of Productivity and Quality Management, Inderscience Enterprises Ltd, vol. 25(3), pages 349-367.
    13. Daniel Sotelsek & Leopoldo Laborda, 2010. "Technical Efficiency and Value Chain of Eastern European Union Companies: An Empirical Application using Semi-Parametric Frontier Methods," Working Papers 04/10, Instituto Universitario de Análisis Económico y Social.
    14. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toloo, Mehdi & Hančlová, Jana, 2020. "Multi-valued measures in DEA in the presence of undesirable outputs," Omega, Elsevier, vol. 94(C).
    2. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    3. Imad Bou-Hamad & Abdel Latef Anouze & Ibrahim H. Osman, 2022. "A cognitive analytics management framework to select input and output variables for data envelopment analysis modeling of performance efficiency of banks using random forest and entropy of information," Annals of Operations Research, Springer, vol. 308(1), pages 63-92, January.
    4. Sarmento, Joaquim Miranda & Renneboog, Luc & Verga-Matos, Pedro, 2017. "Measuring highway efficiency : A DEA approach and the Malquist index," Other publications TiSEM 23264815-321e-45a3-83ee-9, Tilburg University, School of Economics and Management.
    5. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    6. Qingxian An & Xiangyang Tao & Bo Dai & Jinlin Li, 2020. "Modified Distance Friction Minimization Model with Undesirable Output: An Application to the Environmental Efficiency of China’s Regional Industry," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1047-1071, April.
    7. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    8. Galagedera, Don U.A. & Fukuyama, Hirofumi & Watson, John & Tan, Eric K.M., 2020. "Do mutual fund managers earn their fees? New measures for performance appraisal," European Journal of Operational Research, Elsevier, vol. 287(2), pages 653-667.
    9. Fabio Antonio Sartori Piran & Alaércio De Paris & Daniel Pacheco Lacerda & Luis Felipe Riehs Camargo & Rosiane Serrano & Ricardo Augusto Cassel, 2020. "Overall Equipment Effectiveness: Required but not Enough—An Analysis Integrating Overall Equipment Effect and Data Envelopment Analysis," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(2), pages 191-206, June.
    10. Vladimír Holý, 2022. "The impact of operating environment on efficiency of public libraries," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 395-414, March.
    11. Charles, Vincent & Aparicio, Juan & Zhu, Joe, 2019. "The curse of dimensionality of decision-making units: A simple approach to increase the discriminatory power of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 279(3), pages 929-940.
    12. Carlucci, Fabio & Corcione, Carlo & Mazzocchi, Paolo & Trincone, Barbara, 2021. "The role of logistics in promoting Italian agribusiness: The Belt and Road Initiative case study," Land Use Policy, Elsevier, vol. 108(C).
    13. Alan Barrell & Pawel Dobrzanski & Sebastian Bobowski & Krzysztof Siuda & Szymon Chmielowiec, 2021. "Efficiency of Environmental Protection Expenditures in EU Countries," Energies, MDPI, vol. 14(24), pages 1-35, December.
    14. Pawel Dobrzanski, 2018. "Innovation expenditures efficiency in Central and Eastern European Countries," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 36(2), pages 827-859.
    15. Lartey, Theophilus & James, Gregory A. & Danso, Albert, 2021. "Interbank funding, bank risk exposure and performance in the UK: A three-stage network DEA approach," International Review of Financial Analysis, Elsevier, vol. 75(C).
    16. lo Storto, Corrado, 2020. "Performance evaluation of social service provision in Italian major municipalities using Network Data Envelopment Analysis," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    17. Kadziński, Miłosz & Labijak, Anna & Napieraj, Małgorzata, 2017. "Integrated framework for robustness analysis using ratio-based efficiency model with application to evaluation of Polish airports," Omega, Elsevier, vol. 67(C), pages 1-18.
    18. An, Qingxian & Tao, Xiangyang & Xiong, Beibei, 2021. "Benchmarking with data envelopment analysis: An agency perspective," Omega, Elsevier, vol. 101(C).
    19. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    20. Silvia Saravia-Matus & T. S. Amjath-Babu & Sreejith Aravindakshan & Stefan Sieber & Jimmy A. Saravia & Sergio Gomez y Paloma, 2021. "Can Enhancing Efficiency Promote the Economic Viability of Smallholder Farmers? A Case of Sierra Leone," Sustainability, MDPI, vol. 13(8), pages 1-17, April.

    More about this item

    Keywords

    Carbón; Eficiencia; Análisis envolvente de datos;
    All these keywords.

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • L71 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Mining, Extraction, and Refining: Hydrocarbon Fuels
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000180:017722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrador (email available below). General contact details of provider: https://edirc.repec.org/data/femngco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.