IDEAS home Printed from https://ideas.repec.org/a/col/000174/008057.html
   My bibliography  Save this article

Sesgos en estimación, tamano y potencia de una prueba sobre el parámetro de memoria larga en modelos ARFIMA

Author

Listed:
  • Castano Vélez, Elkin
  • Gallón Gómez, Santiago Alejandro
  • Gómez Portilla, Karoll

Abstract

Resumen: Castano et al. (2008) proponen una prueba para investigar la existencia de memoria larga, basada en el parámetro de diferenciación fraccional de un modelo ARFIMA (p, d, q); se muestra que al usar una aproximación autorregresiva de orden igual al entero más próximo a p* = T1/3 para la componente de memoria corta, la prueba de la hipótesis nula de memoria corta contra la alternativa de memoria larga tiene, en general, mayor potencia que algunas otras pruebas conservando un tamano adecuado. Este estudio muestra los sesgos generados en la estimación del parámetro d y su efecto sobre la potencia y tamano de la prueba, cuando se ignora la componente de corto plazo y cuando se emplean modelos que no la aproximan adecuadamente. Adicionalmente, se analiza si los resultados obtenidos por Castano et al. (2008) pueden mejorarse empleando una aproximación autorregresiva diferente.

Suggested Citation

  • Castano Vélez, Elkin & Gallón Gómez, Santiago Alejandro & Gómez Portilla, Karoll, 2011. "Sesgos en estimación, tamano y potencia de una prueba sobre el parámetro de memoria larga en modelos ARFIMA," Revista Lecturas de Economía, Universidad de Antioquia, CIE, February.
  • Handle: RePEc:col:000174:008057
    as

    Download full text from publisher

    File URL: http://aprendeenlinea.udea.edu.co/revistas/index.php/lecturasdeeconomia/article/view/7867/7409
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    3. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    4. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    5. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    6. Harris, David & McCabe, Brendan & Leybourne, Stephen, 2008. "Testing For Long Memory," Econometric Theory, Cambridge University Press, vol. 24(1), pages 143-175, February.
    7. Hauser, Michael A, 1997. "Semiparametric and Nonparametric Testing for Long Memory: A Monte Carlo Study," Empirical Economics, Springer, vol. 22(2), pages 247-271.
    8. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(4), pages 549-582, August.
    9. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elkin Castaño & Santiago Gallón & Karoll Gómez, 2010. "Estimation Biases, Size and Power of a Test on the Long Memory Parameter in ARFIMA Models," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 73, pages 131-148.
    2. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    3. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    4. Ossama Mikhail & Curtis J. Eberwein & Jagdish Handa, 2003. "Testing and Estimating Persistence in Canadian Unemployment," Econometrics 0311004, University Library of Munich, Germany.
    5. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    6. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    7. Belbute, José M. & Pereira, Alfredo M., 2020. "Reference forecasts for CO2 emissions from fossil-fuel combustion and cement production in Portugal," Energy Policy, Elsevier, vol. 144(C).
    8. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    9. S. Lardic & V. Mignon, 2002. "Term premium and long-range dependence in volatility : A FIGARCH-M estimation on some Asian countries," THEMA Working Papers 2002-26, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    10. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    11. Silverberg, Gerald & Verspagen, Bart, 1999. "Long Memory in Time Series of Economic Growth and Convergence," Research Memorandum 015, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    12. J. Eduardo Vera‐Valdés, 2020. "On long memory origins and forecast horizons," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 811-826, August.
    13. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    14. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    15. Guglielmo Maria Caporale & Luis Gil‐Alana, 2014. "Long‐Run and Cyclical Dynamics in the US Stock Market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(2), pages 147-161, March.
    16. Belbute, José M. & Pereira, Alfredo M., 2022. "ARFIMA Reference Forecasts for Worldwide CO2 Emissions and the National Dimension of the Policy Efforts to Meet IPCC Targets," Journal of Economic Development, The Economic Research Institute, Chung-Ang University, vol. 47(1), pages 1-27, March.
    17. Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
    18. Palandri, Alessandro, 2024. "Reconciling interest rates evidence with theory: Rejecting unit roots when the HD(1) is a competing alternative," Journal of Banking & Finance, Elsevier, vol. 161(C).
    19. Murphy, A. & Izzeldin, M., 2009. "Bootstrapping long memory tests: Some Monte Carlo results," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2325-2334, April.
    20. Gil-Alana, Luis A. & Carcel, Hector, 2020. "A fractional cointegration var analysis of exchange rate dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).

    More about this item

    Keywords

    Prueba de hipótesis; modelos de series de tiempo;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000174:008057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Universidad de Antioquia. Facultad de Ciencias Economicas. (Laura Maria Posada Arboleda) (email available below). General contact details of provider: https://edirc.repec.org/data/ciantco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.