Predicting exchange rates using a novel “cointegration based neuro-fuzzy system”
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022.
"“An application of deep learning for exchange rate forecasting”,"
AQR Working Papers
202201, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2022.
- Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022. ""An application of deep learning for exchange rate forecasting"," IREA Working Papers 202201, University of Barcelona, Research Institute of Applied Economics, revised Jan 2022.
- Chavan, Sumit Sunil & Shafighi, Najla, 2021. "Exchange Rate Determination in Asia," MPRA Paper 110622, University Library of Munich, Germany.
- Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
- Leandro Maciel & Fernando Gomide & Rosangela Ballini, 2016.
"Evolving Fuzzy-GARCH Approach for Financial Volatility Modeling and Forecasting,"
Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 379-398, October.
- Leandro Maciel & Fernando Gomide & Rosangela Ballini, 2014. "An Evolving Fuzzy-Garch Approach Forfinancial Volatility Modeling And Forecasting," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 138, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
- Behrooz Gharleghi, 2023. "Debt and currency value during COVID‐19 in the Global South," Economic Affairs, Wiley Blackwell, vol. 43(2), pages 201-210, June.
- Dabin Zhang & Qian Li & Amin W. Mugera & Liwen Ling, 2020. "A hybrid model considering cointegration for interval‐valued pork price forecasting in China," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1324-1341, December.
More about this item
Keywords
Exchange rate; Error correction model; Intelligence systems; Neural networks; Unit root;All these keywords.
JEL classification:
- E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
- F31 - International Economics - - International Finance - - - Foreign Exchange
- F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cii:cepiie:2014-q1-137-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cepiifr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.