IDEAS home Printed from https://ideas.repec.org/a/ces/ifodre/v22y2015i06p35-42.html
   My bibliography  Save this article

Satellitendaten zur Schätzung von Regionaleinkommen – Das Beispiel Deutschland

Author

Listed:
  • Christian Leßmann
  • André Seidel
  • Arne Steinkraus

Abstract

Eine neue Möglichkeit zur Schätzung fehlender regionaler Einkommensdaten bieten Satellitenbilder der Erde bei Nacht. Die grundlegende Idee ist, dass wirtschaftliche Aktivitäten, die in den Abendstunden statt finden, Licht benötigen bzw. emittieren. Aus der Lichtemission bei Nacht kann ein Rückschluss auf wirtschaftliche Größen gezogen werden. Ziel dieses Beitrags ist, die in der Literatur verwendeten Daten vorzu stellen sowie die Möglichkeiten und Grenzen der Nutzung von Satellitendaten zur Schätzung von Einkommen zu diskutieren. Im Beitrag werden die Satellitendaten vorgestellt sowie damit verbundene Messprobleme diskutiert. Anhand des Beispiels Deutschlands wird untersucht, inwieweit sich die Lichtemissionsdaten für regionalökonomische Analysen eignen. Es wurde kein besonders großer und zudem wenig robuster Zusammenhang zwischen Lichtemissionen und regionalem Bruttoinlandsprodukt gefunden. Für weniger entwickelte Staaten können die Daten jedoch ein wertvoller Indikator des nationalen oder regionalen Einkommens sein und damit helfen, die sehr lückenhaften Regionalstatistiken zu vervollständigen.

Suggested Citation

  • Christian Leßmann & André Seidel & Arne Steinkraus, 2015. "Satellitendaten zur Schätzung von Regionaleinkommen – Das Beispiel Deutschland," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 22(06), pages 35-42, December.
  • Handle: RePEc:ces:ifodre:v:22:y:2015:i:06:p:35-42
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/ifodb-2015-06-Lessmann-Satellitendaten.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicola Gennaioli & Rafael La Porta & Florencio Lopez-de-Silanes & Andrei Shleifer, 2013. "Human Capital and Regional Development," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(1), pages 105-164.
    2. Frank Bickenbach & Eckhardt Bode & Peter Nunnenkamp & Mareike Söder, 2016. "Night lights and regional GDP," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 152(2), pages 425-447, May.
    3. William Nordhaus & Xi Chen, 2015. "A sharper image? Estimates of the precision of nighttime lights as a proxy for economic statistics," Journal of Economic Geography, Oxford University Press, vol. 15(1), pages 217-246.
    4. J. Vernon Henderson & Adam Storeygard & David N. Weil, 2012. "Measuring Economic Growth from Outer Space," American Economic Review, American Economic Association, vol. 102(2), pages 994-1028, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bluhm, Richard & Krause, Melanie, 2022. "Top lights: Bright cities and their contribution to economic development," Journal of Development Economics, Elsevier, vol. 157(C).
    2. Carsten Juergens & Fabian M. Meyer-Heß & Marcus Goebel & Torsten Schmidt, 2021. "Remote Sensing for Short-Term Economic Forecasts," Sustainability, MDPI, vol. 13(17), pages 1-23, August.
    3. Christian Leßmann, 2021. "60 Jahre Mauerbau: Leuchtende Landschaften," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 28(04), pages 29-31, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gibson, John & Olivia, Susan & Boe-Gibson, Geua & Li, Chao, 2021. "Which night lights data should we use in economics, and where?," Journal of Development Economics, Elsevier, vol. 149(C).
    2. Lessmann, Christian & Seidel, André, 2017. "Regional inequality, convergence, and its determinants – A view from outer space," European Economic Review, Elsevier, vol. 92(C), pages 110-132.
    3. John Gibson & Susan Olivia & Geua Boe‐Gibson, 2020. "Night Lights In Economics: Sources And Uses," Journal of Economic Surveys, Wiley Blackwell, vol. 34(5), pages 955-980, December.
    4. repec:lic:licosd:41920 is not listed on IDEAS
    5. Carlos Mendez & Felipe Santos‐Marquez, 2021. "Regional convergence and spatial dependence across subnational regions of ASEAN: Evidence from satellite nighttime light data," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(6), pages 1750-1777, December.
    6. Sarah J. Carrington & Pablo Jiménez‐Ayora, 2021. "Shedding light on the convergence debate: Using luminosity data to investigate economic convergence in Ecuador," Review of Development Economics, Wiley Blackwell, vol. 25(1), pages 200-227, February.
    7. Jaqueson K Galimberti & Stefan Pichler & Regina Pleninger, 2023. "Measuring Inequality Using Geospatial Data," The World Bank Economic Review, World Bank, vol. 37(4), pages 549-569.
    8. John Gibson & Susan Olivia & Geua Boe-Gibson, 2019. "A Test of DMSP and VIIRS Night Lights Data for Estimating GDP and Spatial Inequality for Rural and Urban Areas," Working Papers in Economics 19/11, University of Waikato.
    9. Omoniyi Alimi & Geua Boe-Gibson & John Gibson, 2022. "Noisy Night Lights Data: Effects on Research Findings for Developing Countries," Working Papers in Economics 22/12, University of Waikato.
    10. Prakash, Nishith & Rockmore, Marc & Uppal, Yogesh, 2019. "Do criminally accused politicians affect economic outcomes? Evidence from India," Journal of Development Economics, Elsevier, vol. 141(C).
    11. Dickinson, Jeffrey, 2020. "Planes, Trains, and Automobiles: What Drives Human-Made Light?," MPRA Paper 103504, University Library of Munich, Germany.
    12. Katarzyna A. Bilicka & André Seidel, 2022. "Measuring Firm Activity from Outer Space," NBER Working Papers 29945, National Bureau of Economic Research, Inc.
    13. Michał Myck & Mateusz Najsztub, 2020. "Implications of the Polish 1999 administrative reform for regional socio‐economic development," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 28(4), pages 559-579, October.
    14. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2018. "Shedding Light on the Spatial Diffusion of Disasters," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181556, Verein für Socialpolitik / German Economic Association.
    15. Baragwanath, Kathryn & Goldblatt, Ran & Hanson, Gordon & Khandelwal, Amit K., 2021. "Detecting urban markets with satellite imagery: An application to India," Journal of Urban Economics, Elsevier, vol. 125(C).
    16. Nishith Prakash & Marc Rockmore, 2014. "Do Criminal Representatives Hinder or Improve Constituency Outcomes? Evidence from India," Working papers 2014-20, University of Connecticut, Department of Economics.
    17. Fabien Candau & Tchapo Gbandi & Geoffroy Guepie, 2022. "Beyond the income effect of international trade on ethnic wars in Africa," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 30(3), pages 517-534, July.
    18. Anna Bruederle & Roland Hodler, 2018. "Nighttime lights as a proxy for human development at the local level," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-22, September.
    19. John Gibson & Geua Boe-Gibson, 2020. "Three Facts About Night Lights Data," Working Papers in Economics 20/03, University of Waikato.
    20. Piotr Wójcik & Krystian Andruszek, 2022. "Predicting intra‐urban well‐being from space with nonlinear machine learning," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(4), pages 891-913, August.
    21. Papaioannou, Elias & Michalopoulos, Stelios, 2010. "Divide and Rule or the Rule of the Divided? Evidence from Africa," CEPR Discussion Papers 8088, C.E.P.R. Discussion Papers.

    More about this item

    Keywords

    Satellitenkommunikation; Licht; Messung; Nachtarbeit; Einkommen; Bruttoinlandsprodukt; Region; Schätzung; Regionalstatistik; Deutschland;
    All these keywords.

    JEL classification:

    • C89 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other
    • L96 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Telecommunications
    • R10 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifodre:v:22:y:2015:i:06:p:35-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.