IDEAS home Printed from https://ideas.repec.org/a/ces/ifodre/v17y2010i02ps.32-40.html
   My bibliography  Save this article

VAR-Prognose-Pooling : ein Ansatz zur Verbesserung der Informationsgrundlage der ifo Dresden Konjunkturprognosen

Author

Listed:
  • Gerit Vogt

Abstract

Seit einigen Jahren werden von der Dresdner Niederlassung des ifo Instituts im halbjährlichen Rhythmus Prognosen zur gesamtwirtschaftlichen Entwicklung in Sachsen und Ostdeutschland erstellt. Das Bruttoinlandsprodukt (BIP), als wichtigste Konjunktur- und Prognosevariable, wird dabei entstehungsseitig aus der in den einzelnen Wirtschaftsbereichen erwarteten Bruttowertschöpfung berechnet. In diesem Beitrag wird ein Ansatz vorgestellt, der die Informationsgrundlage der ifo Dresden-Konjunkturprognosen verbessern soll. Er basiert auf der Kombination von Prognosen, die mit sparsam spezifizierten vektorautoregressiven Modellen (VAR-Modellen) generiert werden. Der Ansatz wird anhand der vierteljährlichen BIP-Daten vorgestellt, die jüngst vom ifo Institut für den Freistaat Sachsen vorgelegt wurden.

Suggested Citation

  • Gerit Vogt, 2010. "VAR-Prognose-Pooling : ein Ansatz zur Verbesserung der Informationsgrundlage der ifo Dresden Konjunkturprognosen," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 17(02), pages .32-40, April.
  • Handle: RePEc:ces:ifodre:v:17:y:2010:i:02:p:s.32-40
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/ifodb_2010_2_32_40.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    2. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    3. Johannes Mayr & Dirk Ulbricht, 2007. "VAR Model Averaging for Multi-Step Forecasting," ifo Working Paper Series 48, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65, March.
    2. Wenzel, Lars, 2013. "Forecasting regional growth in Germany: A panel approach using business survey data," HWWI Research Papers 133, Hamburg Institute of International Economics (HWWI).
    3. Christian Seiler & Klaus Wohlrabe, 2013. "Das ifo Geschäftsklima und die deutsche Konjunktur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(18), pages 17-21, October.
    4. Robert Lehmann & Klaus Wohlrabe, 2012. "Die Prognose des Bruttoinlandsprodukts auf regionaler Ebene," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 65(21), pages 17-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerit Vogt, 2010. "VAR-Prognose-Pooling : ein Ansatz zur Verbesserung der Informationsgrundlage der ifo Dresden Konjunkturprognosen," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 17(02), pages 32-40, 04.
    2. Jonas Dovern & Christina Ziegler, 2008. "Predicting Growth Rates and Recessions. Assessing U.S. Leading Indicators under Real-Time Condition," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 54(4), pages 293-318.
    3. Emeka Nkoro & Aham Kelvin Uko, 2016. "Exchange Rate and Inflation Volatility and Stock Prices Volatility: Evidence from Nigeria, 1986-2012," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 6(6), pages 1-4.
    4. Czujack, Corinna & Flôres Junior, Renato Galvão & Ginsburgh, Victor, 1995. "On long-run price comovements between paintings and prints," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 269, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    5. Loperfido, Nicola, 2010. "A note on marginal and conditional independence," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1695-1699, December.
    6. KAMKOUM, Arnaud Cedric, 2023. "The Federal Reserve’s Response to the Global Financial Crisis and its Effects: An Interrupted Time-Series Analysis of the Impact of its Quantitative Easing Programs," Thesis Commons d7pvg, Center for Open Science.
    7. Zamani, Mehrzad, 2007. "Energy consumption and economic activities in Iran," Energy Economics, Elsevier, vol. 29(6), pages 1135-1140, November.
    8. Muhammad Shafiullah & Ravinthirakumaran Navaratnam, 2016. "Do Bangladesh and Sri Lanka Enjoy Export-Led Growth? A Comparison of Two Small South Asian Economies," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 17(1), pages 114-132, March.
    9. Alberto Fuertes & Simón Sosvilla-Rivero, 2019. "“Forecasting emerging market currencies: Are inflation expectations useful?”," IREA Working Papers 201918, University of Barcelona, Research Institute of Applied Economics, revised Oct 2019.
    10. Diana Ricciulli-Marín, 2020. "The Fiscal Cost of Conflict: Evidence from La Violencia in Colombia," Cuadernos de Historia Económica 53, Banco de la Republica de Colombia.
    11. Wesam Salah Alaloul & Muhammad Ali Musarat & Muhammad Babar Ali Rabbani & Qaiser Iqbal & Ahsen Maqsoom & Waqas Farooq, 2021. "Construction Sector Contribution to Economic Stability: Malaysian GDP Distribution," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    12. Christoffersen, Peter & Ghysels, Eric & Swanson, Norman R., 2002. "Let's get "real" about using economic data," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 343-360, August.
    13. Hany Eldemerdash & Hugh Metcalf & Sara Maioli, 2014. "Twin deficits: new evidence from a developing (oil vs. non-oil) countries’ perspective," Empirical Economics, Springer, vol. 47(3), pages 825-851, November.
    14. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    15. Cantoni, Enrico & Gazzè, Ludovica & Schafer, Jerome, 2021. "Turnout in concurrent elections: Evidence from two quasi-experiments in Italy," European Journal of Political Economy, Elsevier, vol. 70(C).
    16. Vlatka Bilas & Mile Bosnjak, 2015. "Revealed Comparative Advantage And Merchandise Exports: The Case Of Merchandise Trade Between Croatia And The Rest Of The European Union Member Countries," Economic Thought and Practice, Department of Economics and Business, University of Dubrovnik, vol. 24(1), pages 29-47, june.
    17. Omaima A.G. Hassan & Peter Romilly, 2018. "Relations between corporate economic performance, environmental disclosure and greenhouse gas emissions: New insights," Business Strategy and the Environment, Wiley Blackwell, vol. 27(7), pages 893-909, November.
    18. Claire G.Gilmore & Brian Lucey & Ginette M.McManus, 2005. "The Dynamics of Central European Equity Market Integration," The Institute for International Integration Studies Discussion Paper Series iiisdp069, IIIS.
    19. Kathryn M. Dominguez, 1991. "Do Exchange Auctions Work? An Examination of the Bolivian Experience," NBER Working Papers 3683, National Bureau of Economic Research, Inc.
    20. Stephen McKnight & Marco Robles Sánchez, 2014. "Is a monetary union feasible for Latin America? Evidence from real effective exchange rates and interest rate pass-through levels," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 29(2), pages 225-262.

    More about this item

    Keywords

    Regionale Entwicklung; Prognoseverfahren; Konjunkturindikator; VAR-Modell; Sachsen; Neue Bundesländer;
    All these keywords.

    JEL classification:

    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifodre:v:17:y:2010:i:02:p:s.32-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.