IDEAS home Printed from https://ideas.repec.org/a/cbu/jrnlec/y2017v2p52-56.html
   My bibliography  Save this article

Analysis Of Performance From Processing And Preserving Of Fruit And Vegetables

Author

Listed:
  • APOSTOL CIPRIAN

    (FACULTY OF ECONOMICS AND BUSINESS ADMINISTRATION, ALEXANDRU IOAN CUZA UNIVERSITY, IASI, ROMANIA)

Abstract

Given that the world population is increasing continuously in recent years, and natural resources are becoming increasingly scarce, ensuring healthy food problem is a global challenge. Nutritional value, palatability, and high degree of assimilation by the body makes fruits and vegetables are recommended and widely used in food, both fresh and preserved. The study aims at comparing the activity of manufacturing fruit and vegetable juices with the processing and preservation of fruit and vegetables to highlight which of the two is more efficient in the economic and financial point of view. Through a descriptive and comparative analysis of specific indicators are reflected the ma in aspects of the performance of the two sectors in Romania. The main source of information is the National Agency for Fiscal Administration. The period analyzed is from 2008, when started financial and economic crisis in Romania, and 2015, because until this year were available the necessary information, which can explain the evolution of performance notoly during the crisis, as well as after it is finished. In this study, it was found that the industry processing and preservation of fruits and vegetables in Romania is quite efficient and has been constantly developing, but mainly in the processing and preservation of fruits and vegetables, the production of fruit and vegetables recording much lower.

Suggested Citation

  • Apostol Ciprian, 2017. "Analysis Of Performance From Processing And Preserving Of Fruit And Vegetables," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 2, pages 52-56, April.
  • Handle: RePEc:cbu:jrnlec:y:2017:v:2:p:52-56
    as

    Download full text from publisher

    File URL: http://www.utgjiu.ro/revista/ec/pdf/2017-02/06_Apostol.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    2. Ciprian Apostol, 2014. "Performance Of Ecological Agriculture In Romania," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 238-243, August.
    3. Ciprian Apostol, 2015. "Performance Analysis Of Agricultural Activities In Romania In The Register Of Sustainable Development," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 2, pages 58-63, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Movedi, Ermes & Valiante, Daniele & Colosio, Alessandro & Corengia, Luca & Cossa, Stefano & Confalonieri, Roberto, 2022. "A new approach for modeling crop-weed interaction targeting management support in operational contexts: A case study on the rice weeds barnyardgrass and red rice," Ecological Modelling, Elsevier, vol. 463(C).
    3. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    4. Lucia Mancini, 2013. "Conventional, Organic and Polycultural Farming Practices: Material Intensity of Italian Crops and Foodstuffs," Resources, MDPI, vol. 2(4), pages 1-23, December.
    5. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    6. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    7. Seck, Abdoulaye & Thiam, Djiby Racine, 2022. "Understanding consumer attitudes to and valuation of organic food in Sub-Saharan Africa: A double-bound contingent method applied in Dakar, Senegal," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 17(1), March.
    8. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    9. Sadowski, Arkadiusz & Wojcieszak-Zbierska, Monika Małgorzata & Zmyślona, Jagoda, 2024. "Agricultural production in the least developed countries and its impact on emission of greenhouse gases – An energy approach," Land Use Policy, Elsevier, vol. 136(C).
    10. Kalaitzandonakes, Nicholas & Lusk, Jayson & Magnier, Alexandre, 2018. "The price of non-genetically modified (non-GM) food," Food Policy, Elsevier, vol. 78(C), pages 38-50.
    11. Janet MacFall & Joanna Lelekacs & Todd LeVasseur & Steve Moore & Jennifer Walker, 2015. "Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 608-622, December.
    12. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    13. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    14. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.
    15. Delate, Kathleen & Cambardella, Cynthia & Chase, Craig & Turnbull, Robert, 2015. "A Review of Long-Term Organic Comparison Trials in the U.S," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(3 Special).
    16. Kalle Margus & Viacheslav Eremeev & Evelin Loit & Eve Runno-Paurson & Erkki Mäeorg & Anne Luik & Liina Talgre, 2022. "Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions," Agriculture, MDPI, vol. 12(4), pages 1-12, April.
    17. Malard, Julien J & Adamowski, Jan Franklin & Rojas Díaz, Marcela & Nassar, Jessica Bou & Anandaraja, Nallusamy & Tuy, Héctor & Arévalo-Rodriguez, Luís Andrés & Melgar-Quiñonez, Hugo Ramiro, 2020. "Agroecological food web modelling to evaluate and design organic and conventional agricultural systems," Ecological Modelling, Elsevier, vol. 421(C).
    18. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    19. Maurer, Rainer, 2023. "Comparing the effect of different agricultural land-use systems on biodiversity," Land Use Policy, Elsevier, vol. 134(C).
    20. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbu:jrnlec:y:2017:v:2:p:52-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ecobici Nicolae (email available below). General contact details of provider: https://edirc.repec.org/data/fetgjro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.