IDEAS home Printed from https://ideas.repec.org/a/cbk/journl/v9y2020i3p87-106.html
   My bibliography  Save this article

GARCH Modelling of High-Capitalization Cryptocurrencies' Impacts During Bearish Markets

Author

Listed:
  • Anastasiadis Panagiotis

    (Department of Economics, University of Thessaly, Volos, Greece)

  • Katsaros Efthymios

    (Department of Economics, University of Thessaly, Volos, Greece)

  • Koutsioukis Anastasios-Taxiarchis

    (Department of Economics, University of Thessaly, Volos, Greece)

  • Pandazis Athanasios

    (Department of Economics, University of Thessaly, Volos, Greece)

Abstract

This study investigates how twelve cryptocurrencies with large capitalization get influenced by the three cryptocurrencies with the largest market capitalization (Bitcoin, Ethereum, and Ripple). Twenty alternative specifications of ARCH, GARCH as well as DCC-GARCH are employed. Daily data covers the period from 1 January 1 2018 to 16 September 2018, representing the intense bearish cryptocurrency market. Empirical outcomes reveal that volatility among digital currencies is not best described by the same specification but varies according to the currency. It is evident that most cryptocurrencies have a positive relationship with Bitcoin, Ethereum and Ripple, therefore, there is no great possibility of hedging for cryptocurrency portfolio managers and investors in distressed times.

Suggested Citation

  • Anastasiadis Panagiotis & Katsaros Efthymios & Koutsioukis Anastasios-Taxiarchis & Pandazis Athanasios, 2020. "GARCH Modelling of High-Capitalization Cryptocurrencies' Impacts During Bearish Markets," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 9(3), pages 87-106.
  • Handle: RePEc:cbk:journl:v:9:y:2020:i:3:p:87-106
    as

    Download full text from publisher

    File URL: http://www.cbcg.me/repec/cbk/journl/vol9no3-6.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikola Fabris, 2018. "Challenges for Modern Monetary Policy," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 7(2), pages 5-24.
    2. Ammous, Saifedean, 2018. "Can cryptocurrencies fulfil the functions of money?," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 38-51.
    3. Angelo Corelli, 2018. "Cryptocurrencies and Exchange Rates: A Relationship and Causality Analysis," Risks, MDPI, vol. 6(4), pages 1-11, October.
    4. Stephen Chan & Jeffrey Chu & Saralees Nadarajah & Joerg Osterrieder, 2017. "A Statistical Analysis of Cryptocurrencies," JRFM, MDPI, vol. 10(2), pages 1-23, May.
    5. Marc Gronwald, 2014. "The Economics of Bitcoins - Market Characteristics and Price Jumps," CESifo Working Paper Series 5121, CESifo.
    6. Beneki, Christina & Koulis, Alexandros & Kyriazis, Nikolaos A. & Papadamou, Stephanos, 2019. "Investigating volatility transmission and hedging properties between Bitcoin and Ethereum," Research in International Business and Finance, Elsevier, vol. 48(C), pages 219-227.
    7. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    10. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    11. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    12. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    13. Kyriazis, Nikolaos & Papadamou, Stephanos & Corbet, Shaen, 2020. "A systematic review of the bubble dynamics of cryptocurrency prices," Research in International Business and Finance, Elsevier, vol. 54(C).
    14. Nikolaos A. Kyriazis, 2019. "A Survey on Empirical Findings about Spillovers in Cryptocurrency Markets," JRFM, MDPI, vol. 12(4), pages 1-17, November.
    15. Nikolaos A. Kyriazis, 2020. "Is Bitcoin Similar to Gold? An Integrated Overview of Empirical Findings," JRFM, MDPI, vol. 13(5), pages 1-19, May.
    16. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    17. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    18. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    19. Troster, Victor & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Macedo, Demian Nicolás, 2019. "Bitcoin returns and risk: A general GARCH and GAS analysis," Finance Research Letters, Elsevier, vol. 30(C), pages 187-193.
    20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nenad Milojević & Srdjan Redzepagic, 2021. "Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(3), pages 41-57.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    2. Nikolaos A. Kyriazis, 2021. "The Nexus of Sophisticated Digital Assets with Economic Policy Uncertainty: A Survey of Empirical Findings and an Empirical Investigation," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    3. Nikolaos A. Kyriazis, 2019. "A Survey on Empirical Findings about Spillovers in Cryptocurrency Markets," JRFM, MDPI, vol. 12(4), pages 1-17, November.
    4. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    5. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    6. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    7. Zhang, Wei & Li, Yi, 2020. "Is idiosyncratic volatility priced in cryptocurrency markets?," Research in International Business and Finance, Elsevier, vol. 54(C).
    8. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    9. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    10. Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
    11. Zhou, Siwen, 2018. "Exploring the Driving Forces of the Bitcoin Exchange Rate Dynamics: An EGARCH Approach," MPRA Paper 89445, University Library of Munich, Germany.
    12. Achraf Ghorbel & Ahmed Jeribi, 2021. "Investigating the relationship between volatilities of cryptocurrencies and other financial assets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 817-843, December.
    13. Pınar Kaya Soylu & Mustafa Okur & Özgür Çatıkkaş & Z. Ayca Altintig, 2020. "Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple," JRFM, MDPI, vol. 13(6), pages 1-21, May.
    14. Emmanouil M. L. Economou & Nikolaos A. Kyriazis, 2021. "Achieving Sustainable Financial Transactions under Regimes without a Central Bank—An Intertemporal Comparison," Sustainability, MDPI, vol. 13(3), pages 1-13, January.
    15. Dean Fantazzini & Stephan Zimin, 2020. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
    16. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    17. Nikolaos A. Kyriazis, 2021. "Investigating the diversifying or hedging nexus of cannabis cryptocurrencies with major digital currencies," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 845-861, December.
    18. Papadamou, Stephanos & Kyriazis, Nikolaos A. & Tzeremes, Panayiotis & Corbet, Shaen, 2021. "Herding behaviour and price convergence clubs in cryptocurrencies during bull and bear markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    19. Tak Kuen Siu, 2023. "Bayesian nonlinear expectation for time series modelling and its application to Bitcoin," Empirical Economics, Springer, vol. 64(1), pages 505-537, January.
    20. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.

    More about this item

    Keywords

    Bitcoin; Ethereum; Ripple; Garch; Volatility; Bear market;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbk:journl:v:9:y:2020:i:3:p:87-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cbmgvme.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.