IDEAS home Printed from https://ideas.repec.org/a/caa/jnlswr/vpreprintid77-2024-swr.html
   My bibliography  Save this article

Biochar innovations for sustainable agriculture: Acidification and zinc enrichment strategies to improve calcareous soil fertility and wheat yield

Author

Listed:
  • Salih Demirkaya

    (Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye)

  • Coskun Gülser

    (Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye)

Abstract

Calcareous soils, typically characterized by low fertility, low organic matter and nitrogen content, and often deficient in phosphorus, zinc, and iron, as well as having low microbial activity, require the development of sustainable soil conditioners to improve fertility. To address these shortcomings and promote sustainable agriculture, biochar, especially with acidic character, may offer a promising solution. This study investigates the effects of modified biochar by H2SO4 and ZnSO4 on soil properties and wheat yield under field conditions. For this purpose, biochar (B), acidified biochar (AB), Zn enriched biochar (BZn), and acidified-Zn enriched biochar (ABZn) were applied to the field at two different doses (0.5 and 1.0%) together with the control treatment (Ck) without biochar application. AB1.0% was determined as the most effective treatment in decreasing soil pH (0.15 units), while B1.0% was determined as the most effective treatment in increasing organic carbon and cation exchange capacity, 13% and 32%, respectively. The effect of the treatments varied for specific nutrients. The highest antioxidant enzyme activities were found in acidified biochars where the lowest yields were obtained. Compared to the Ck, the highest catalase (CAT) (32%) was determined in ABZn1.0%, ascorbate peroxidase (APX) (56%) and glutathione peroxidase (GPX) (36%) were determined in ABZn0.5%, and superoxide dismutase (SOD) (28%) was determined in AB0.5%. The highest proline (PRO), with the least decrease in yield, was found in the AB1.0% application, which is 205% more than Ck. B and BZn treatments all increased the grain yield, and the highest increase was 20% in B1.0% when compared to the Ck.

Suggested Citation

  • Salih Demirkaya & Coskun Gülser, . "Biochar innovations for sustainable agriculture: Acidification and zinc enrichment strategies to improve calcareous soil fertility and wheat yield," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 0.
  • Handle: RePEc:caa:jnlswr:v:preprint:id:77-2024-swr
    DOI: 10.17221/77/2024-SWR
    as

    Download full text from publisher

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/77/2024-SWR.html
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/77/2024-SWR?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoud El-Sharkawy & Ahmed H. El-Naggar & Arwa Abdulkreem AL-Huqail & Adel M. Ghoneim, 2022. "Acid-Modified Biochar Impacts on Soil Properties and Biochemical Characteristics of Crops Grown in Saline-Sodic Soils," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    2. Chen, Mei & Wang, Fang & Zhang, De-li & Yi, Wei-ming & Liu, Yi, 2021. "Effects of acid modification on the structure and adsorption NH4+-N properties of biochar," Renewable Energy, Elsevier, vol. 169(C), pages 1343-1350.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salih Demirkaya & Abdurrahman Ay & Coşkun Gülser & Rıdvan Kızılkaya, 2025. "Enhancing Clay Soil Productivity with Fresh and Aged Biochar: A Two-Year Field Study on Soil Quality and Wheat Yield," Sustainability, MDPI, vol. 17(2), pages 1-18, January.
    2. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Tien Ngo & Leadin S. Khudur & Ibrahim Gbolahan Hakeem & Kalpit Shah & Aravind Surapaneni & Andrew S. Ball, 2022. "Wood Biochar Enhances the Valorisation of the Anaerobic Digestion of Chicken Manure," Clean Technol., MDPI, vol. 4(2), pages 1-20, May.
    4. Roghayeh Mousavi & MirHassan Rasouli-Sadaghiani & Ebrahim Sepehr & Mohsen Barin & Ramesh Raju Vetukuri, 2023. "Improving Phosphorus Availability and Wheat Yield in Saline Soil of the Lake Urmia Basin through Enriched Biochar and Microbial Inoculation," Agriculture, MDPI, vol. 13(4), pages 1-16, March.
    5. Mutair A. Akanji & Munir Ahmad & Mohammad I. Al-Wabel & Abdullah S. F. Al-Farraj, 2022. "Soil Phosphorus Fractionation and Bio-Availability in a Calcareous Soil as Affected by Conocarpus Waste Biochar and Its Acidified Derivative," Agriculture, MDPI, vol. 12(12), pages 1-35, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:preprint:id:77-2024-swr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.