IDEAS home Printed from https://ideas.repec.org/a/caa/jnlswr/v18y2023i3id105-2022-swr.html
   My bibliography  Save this article

The effects of slope and altitude on soil organic carbon and clay content in different land-uses: A case study in the Czech Republic

Author

Listed:
  • Shahin Nozari
  • Luboš Borůvka

    (Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic)

Abstract

Soil organic carbon (SOC) and clay, as indicators of soil fertility, are mainly used to determine the ability of soil to retain water and store the nutrients that are necessary for plant growth. However, the distribution of SOC and clay is influenced by topography and land-use. In the present study, the relationships between SOC, clay, altitude, and slope in the topsoil of two different districts in the Czech Republic including the Liberec (71 samples) and Domažlice (67 samples) districts were investigated. To analyse the relationships between slope and SOC, linear regression was used. Results showed that SOC content increased when slope, clay, or altitude increased; however, there were no significant correlations between SOC and clay in both districts. Clay increased with decreasing slope, but clay and altitude were not correlated well in both areas. Then, study areas were divided into three land-use types including arable land, forest, and complex system of agriculture, parcels, and forests. Consequently, the correlations between SOC and slope and clay and slope were generally improved, indicating the importance of land-use on SOC and clay content. Additionally, using multiple regression with several topographic factors can provide a better prediction of SOC and clay content in each land-use for both districts, indicating the complex effects of topography on SOC and clay.

Suggested Citation

  • Shahin Nozari & Luboš Borůvka, 2023. "The effects of slope and altitude on soil organic carbon and clay content in different land-uses: A case study in the Czech Republic," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 18(3), pages 204-218.
  • Handle: RePEc:caa:jnlswr:v:18:y:2023:i:3:id:105-2022-swr
    DOI: 10.17221/105/2022-SWR
    as

    Download full text from publisher

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/105/2022-SWR.html
    Download Restriction: free of charge

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/105/2022-SWR.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/105/2022-SWR?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosa Francaviglia & Jorge Álvaro-Fuentes & Claudia Di Bene & Lingtong Gai & Kristiina Regina & Eila Turtola, 2019. "Diversified Arable Cropping Systems and Management Schemes in Selected European Regions Have Positive Effects on Soil Organic Carbon Content," Agriculture, MDPI, vol. 9(12), pages 1-18, December.
    2. Kabindra Adhikari & Alfred E Hartemink & Budiman Minasny & Rania Bou Kheir & Mette B Greve & Mogens H Greve, 2014. "Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:caa:jnlswr:v:preprint:id:119-2023-swr is not listed on IDEAS
    2. Shahin Nozari & Mohammad Reza Pahlavan-Rad & Colby Brungard & Brandon Heung & Luboš Borůvka, 2024. "Digital soil mapping using machine learning-based methods to predict soil organic carbon in two different districts in the Czech Republic," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 19(1), pages 32-49.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernardo Martin-Gorriz & José A. Zabala & Virginia Sánchez-Navarro & Belén Gallego-Elvira & Víctor Martínez-García & Francisco Alcon & José Francisco Maestre-Valero, 2022. "Intercropping Practices in Mediterranean Mandarin Orchards from an Environmental and Economic Perspective," Agriculture, MDPI, vol. 12(5), pages 1-17, April.
    2. Nmehielle F. & Ogoro M. & Obafemi A. A., 2023. "Evaluating the Flood Control Measures and Resilience Employed by Communities Along the New Calabar River Catchment," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(9), pages 289-302, September.
    3. Chiara Piccini & Rosa Francaviglia & Alessandro Marchetti, 2020. "Predicted Maps for Soil Organic Matter Evaluation: The Case of Abruzzo Region (Italy)," Land, MDPI, vol. 9(10), pages 1-14, September.
    4. Odunayo David Adeniyi & Alexander Brenning & Alice Bernini & Stefano Brenna & Michael Maerker, 2023. "Digital Mapping of Soil Properties Using Ensemble Machine Learning Approaches in an Agricultural Lowland Area of Lombardy, Italy," Land, MDPI, vol. 12(2), pages 1-17, February.
    5. Sandra Duarte-Guardia & Pablo L. Peri & Wulf Amelung & Douglas Sheil & Shawn W. Laffan & Nils Borchard & Michael I. Bird & Wouter Dieleman & David A. Pepper & Brian Zutta & Esteban Jobbagy & Lucas C. , 2019. "Better estimates of soil carbon from geographical data: a revised global approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 355-372, March.
    6. Peltonen-Sainio, Pirjo & Sorvali, Jaana & Kaseva, Janne, 2021. "Finnish farmers’ views towards fluctuating and changing precipitation patterns pave the way for the future," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Akila Wijerathna-Yapa & Ranjith Pathirana, 2022. "Sustainable Agro-Food Systems for Addressing Climate Change and Food Security," Agriculture, MDPI, vol. 12(10), pages 1-26, September.
    8. Kingsley JOHN & Isong Abraham Isong & Ndiye Michael Kebonye & Esther Okon Ayito & Prince Chapman Agyeman & Sunday Marcus Afu, 2020. "Using Machine Learning Algorithms to Estimate Soil Organic Carbon Variability with Environmental Variables and Soil Nutrient Indicators in an Alluvial Soil," Land, MDPI, vol. 9(12), pages 1-20, December.
    9. Ranjith P. Udawatta & Lalith Rankoth & Shibu Jose, 2019. "Agroforestry and Biodiversity," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    10. Kinga Wieczorek & Anna Turek & Wojciech M. Wolf, 2023. "Combined Effect of Climate and Anthropopressure on River Water Quality," IJERPH, MDPI, vol. 20(4), pages 1-27, February.
    11. Shuai Wang & Qiubing Wang & Kabindra Adhikari & Shuhai Jia & Xinxin Jin & Hongbin Liu, 2016. "Spatial-Temporal Changes of Soil Organic Carbon Content in Wafangdian, China," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    12. Dun-Chun He & Yan-Li Ma & Zhuan-Zhuan Li & Chang-Sui Zhong & Zhao-Bang Cheng & Jiasui Zhan, 2021. "Crop Rotation Enhances Agricultural Sustainability: From an Empirical Evaluation of Eco-Economic Benefits in Rice Production," Agriculture, MDPI, vol. 11(2), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:18:y:2023:i:3:id:105-2022-swr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.