IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i2p494-d1070868.html
   My bibliography  Save this article

Digital Mapping of Soil Properties Using Ensemble Machine Learning Approaches in an Agricultural Lowland Area of Lombardy, Italy

Author

Listed:
  • Odunayo David Adeniyi

    (Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy)

  • Alexander Brenning

    (Department of Geography, Friedrich Schiller University Jena, 07743 Jena, Germany)

  • Alice Bernini

    (Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy)

  • Stefano Brenna

    (ERSAF, Regione Lombardia Milan, 20124 Milano, Italy)

  • Michael Maerker

    (Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy
    Leibniz Centre for Agricultural Landscape Research, Working Group on Soil Erosion and Feedbacks, 15374 Müncheberg, Germany)

Abstract

Sustainable agricultural landscape management needs reliable and accurate soil maps and updated geospatial soil information. Recently, machine learning (ML) models have commonly been used in digital soil mapping, together with limited data, for various types of landscapes. In this study, we tested linear and nonlinear ML models in predicting and mapping soil properties in an agricultural lowland landscape of Lombardy region, Italy. We further evaluated the ability of an ensemble learning model, based on a stacking approach, to predict the spatial variation of soil properties, such as sand, silt, and clay contents, soil organic carbon content, pH, and topsoil depth. Therefore, we combined the predictions of the base learners (ML models) with two meta-learners. Prediction accuracies were assessed using a nested cross-validation procedure. Nonetheless, the nonlinear single models generally performed well, with RF having the best results; the stacking models did not outperform all the individual base learners. The most important topographic predictors of the soil properties were vertical distance to channel network and channel network base level. The results yield valuable information for sustainable land use in an area with a particular soil water cycle, as well as for future climate and socioeconomic changes influencing water content, soil pollution dynamics, and food security.

Suggested Citation

  • Odunayo David Adeniyi & Alexander Brenning & Alice Bernini & Stefano Brenna & Michael Maerker, 2023. "Digital Mapping of Soil Properties Using Ensemble Machine Learning Approaches in an Agricultural Lowland Area of Lombardy, Italy," Land, MDPI, vol. 12(2), pages 1-17, February.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:494-:d:1070868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/2/494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/2/494/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Davies Molly Margaret & van der Laan Mark J., 2016. "Optimal Spatial Prediction Using Ensemble Machine Learning," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 179-201, May.
    2. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    3. Kabindra Adhikari & Alfred E Hartemink & Budiman Minasny & Rania Bou Kheir & Mette B Greve & Mogens H Greve, 2014. "Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Odunayo David Adeniyi & Hauwa Bature & Michael Mearker, 2024. "A Systematic Review on Digital Soil Mapping Approaches in Lowland Areas," Land, MDPI, vol. 13(3), pages 1-22, March.
    2. Ali Sakhaee & Thomas Scholten & Ruhollah Taghizadeh-Mehrjardi & Mareike Ließ & Axel Don, 2024. "Spatial Prediction of Organic Matter Quality in German Agricultural Topsoils," Agriculture, MDPI, vol. 14(8), pages 1-25, August.
    3. Dorijan Radočaj & Mateo Gašparović & Mladen Jurišić, 2024. "Open Remote Sensing Data in Digital Soil Organic Carbon Mapping: A Review," Agriculture, MDPI, vol. 14(7), pages 1-19, June.
    4. Giuseppe Lo Papa & Calogero Schillaci & Maria Fantappiè & Giuliano Langella, 2024. "Editorial of the Special Issue Digital Soil Mapping, Decision Support Tools and Soil Monitoring Systems in the Mediterranean," Land, MDPI, vol. 13(6), pages 1-4, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    2. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    5. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    6. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    7. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    8. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    9. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    11. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    12. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    13. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    14. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    15. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    16. Giovanny Pillajo-Quijia & Blanca Arenas-Ramírez & Camino González-Fernández & Francisco Aparicio-Izquierdo, 2020. "Influential Factors on Injury Severity for Drivers of Light Trucks and Vans with Machine Learning Methods," Sustainability, MDPI, vol. 12(4), pages 1-28, February.
    17. Francesco Sartor & Jonathan P. Moore & Hans-Peter Kubis, 2021. "Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    18. Zander S. Venter & Adam Sadilek & Charlotte Stanton & David N. Barton & Kristin Aunan & Sourangsu Chowdhury & Aaron Schneider & Stefano Maria Iacus, 2021. "Mobility in Blue-Green Spaces Does Not Predict COVID-19 Transmission: A Global Analysis," IJERPH, MDPI, vol. 18(23), pages 1-12, November.
    19. Chiara Piccini & Rosa Francaviglia & Alessandro Marchetti, 2020. "Predicted Maps for Soil Organic Matter Evaluation: The Case of Abruzzo Region (Italy)," Land, MDPI, vol. 9(10), pages 1-14, September.
    20. G. Brooke Anderson & Keith W. Oleson & Bryan Jones & Roger D. Peng, 2018. "Classifying heatwaves: developing health-based models to predict high-mortality versus moderate United States heatwaves," Climatic Change, Springer, vol. 146(3), pages 439-453, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:494-:d:1070868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.