IDEAS home Printed from https://ideas.repec.org/a/caa/jnlswr/v11y2016i3id15-2015-swr.html
   My bibliography  Save this article

Estimated contribution of selected non-point pollution sources to the phosphorus and nitrogen loads in water bodies of the Vltava river basin

Author

Listed:
  • Pavel ROSENDORF

    (Department of Protection of Aquatic Ecosystems, T.G. Masaryk Water Research Institute, Prague, Czech Republic)

  • Petr VYSKOČ

    (Department of Protection of Aquatic Ecosystems, T.G. Masaryk Water Research Institute, Prague, Czech Republic)

  • Hana PRCHALOVÁ

    (Department of Protection of Aquatic Ecosystems, T.G. Masaryk Water Research Institute, Prague, Czech Republic)

  • Daniel FIALA

    (Department of Protection of Aquatic Ecosystems, T.G. Masaryk Water Research Institute, Prague, Czech Republic)

Abstract

Eutrophication of inland waters by phosphorus as well as loads of coastal and marine waters by nitrogen is a major problem that impedes water bodies to meet the status defined by the Water Framework Directive. In order to reduce the nutrient load on the aquatic environment, first the significance of various pollution types should be thoroughly analyzed. The analysis of phosphorus runoff from agricultural land under normal rainfall-runoff conditions, and of nitrogen runoff associated with the application of manure on farmland shows their different impact on water body status in the Vltava river basin. The assessment of phosphorus indicates that annual specific phosphorus runoff ranges from 0.1 to 9.98 kg/km2 and in the sub-basins of the Upper Vltava, Berounka, and Lower Vltava, the average values from all water bodies reach 4.08, 2.92, and 4.02 kg/km2, respectively. Compared with the allowable capacity of water bodies for achieving a proper status, the average rate of phosphorus input on the load of water bodies comes within 20%, with a maximum value slightly exceeding 50%. This phosphorus input will not be a significant source of eutrophication of inland waters and measures will have to focus rather on other eutrophication sources. Estimating the significance of the impact of manure application on the nitrogen load of water bodies provides a completely opposite picture. The analyses showed that the load of water bodies ranges from very low values in areas without livestock to high loads in tens of kg/ha per year (max. 31.5 kg/ha/year). In the sub-basins of the Upper Vltava, Berounka, and Lower Vltava the annual specific runoff of nitrogen reaches average values for all water bodies (4.8, 3.9, and 5.7 kg/ha, respectively). The assessment of the proportion of nitrogen input on the load of water bodies showed that 25% of cases in the area of the water body may represent a critical load leading to an adverse assessment of ecological status. In many other water bodies it can, however, taking into account the load of mineral fertilizers, lead to exceeding the allowable capacity of water bodies and the risk of not achieving a right status. Nitrogen input after application of manure in soils represents an important source that threatens the right status of waters. Attention should thus be paid to all types of measures that will reduce the load of this source or restrict its transport from soil to waters.

Suggested Citation

  • Pavel ROSENDORF & Petr VYSKOČ & Hana PRCHALOVÁ & Daniel FIALA, 2016. "Estimated contribution of selected non-point pollution sources to the phosphorus and nitrogen loads in water bodies of the Vltava river basin," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(3), pages 196-204.
  • Handle: RePEc:caa:jnlswr:v:11:y:2016:i:3:id:15-2015-swr
    DOI: 10.17221/15/2015-SWR
    as

    Download full text from publisher

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/15/2015-SWR.html
    Download Restriction: free of charge

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/15/2015-SWR.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/15/2015-SWR?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul J. A. Withers & Colin Neal & Helen P. Jarvie & Donnacha G. Doody, 2014. "Agriculture and Eutrophication: Where Do We Go from Here?," Sustainability, MDPI, vol. 6(9), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    2. Leushantha Mudaly & Michael van der Laan, 2020. "Interactions between Irrigated Agriculture and Surface Water Quality with a Focus on Phosphate and Nitrate in the Middle Olifants Catchment, South Africa," Sustainability, MDPI, vol. 12(11), pages 1-25, May.
    3. Alessandro Abbà & Marta Domini & Marco Baldi & Roberta Pedrazzani & Giorgio Bertanza, 2023. "Ammonia Recovery from Livestock Manure Digestate through an Air-Bubble Stripping Reactor: Evaluation of Performance and Energy Balance," Energies, MDPI, vol. 16(4), pages 1-15, February.
    4. Laima Česonienė & Daiva Šileikienė & Vitas Marozas & Laura Čiteikė, 2021. "Influence of Anthropogenic Loads on Surface Water Status: A Case Study in Lithuania," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    5. Ibrahim, Muhammad Asim & Johansson, Marie, 2022. "Combating climate change – What, where and how to implement adaptive measures in the agriculture sector of Öland, Sweden, keeping in view the constraints of carrying capacities and risk of maladaptati," Land Use Policy, Elsevier, vol. 122(C).
    6. Momtahina Hasnat & Mohammad Ashraful Alam & Mariam Khanam & Bushra Islam Binte & Mohammad Humayun Kabir & Mohammad Saiful Alam & Mohammed Zia Uddin Kamal & Golum Kibria Muhammad Mustafizur Rahman & Mo, 2022. "Effect of Nitrogen Fertilizer and Biochar on Organic Matter Mineralization and Carbon Accretion in Soil," Sustainability, MDPI, vol. 14(6), pages 1-12, March.
    7. Yogesh P. Khare & Rajendra Paudel & Ruscena Wiederholt & Anteneh Z. Abiy & Thomas Van Lent & Stephen E. Davis & Younggu Her, 2021. "Watershed Response to Legacy Phosphorus and Best Management Practices in an Impacted Agricultural Watershed in Florida, U.S.A," Land, MDPI, vol. 10(9), pages 1-22, September.
    8. Shama E. Haque, 2021. "How Effective Are Existing Phosphorus Management Strategies in Mitigating Surface Water Quality Problems in the U.S.?," Sustainability, MDPI, vol. 13(12), pages 1-13, June.
    9. Mohammad A. T. Alsheyab & Sigrid Kusch-Brandt, 2018. "Potential Recovery Assessment of the Embodied Resources in Qatar’s Wastewater," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    10. Radovan Savic & Milica Stajic & Boško Blagojević & Atila Bezdan & Milica Vranesevic & Vesna Nikolić Jokanović & Aleksandar Baumgertel & Marina Bubalo Kovačić & Jelena Horvatinec & Gabrijel Ondrasek, 2022. "Nitrogen and Phosphorus Concentrations and Their Ratios as Indicators of Water Quality and Eutrophication of the Hydro-System Danube–Tisza–Danube," Agriculture, MDPI, vol. 12(7), pages 1-17, June.
    11. Anna Karpinska & Demi Ryan & Kieran Germaine & David Dowling & Patrick Forrestal & Thomais Kakouli-Duarte, 2021. "Soil Microbial and Nematode Community Response to the Field Application of Recycled Bio-Based Fertilisers in Irish Grassland," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    12. Julius Krebs & Sonja Bach, 2018. "Permaculture—Scientific Evidence of Principles for the Agroecological Design of Farming Systems," Sustainability, MDPI, vol. 10(9), pages 1-24, September.
    13. Jessica Stubenrauch & Beatrice Garske & Felix Ekardt, 2018. "Sustainable Land Use, Soil Protection and Phosphorus Management from a Cross-National Perspective," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    14. Kofi Armah Boakye-Yiadom & Alessio Ilari & Valentina Bisinella & Ester Foppa Pedretti & Daniele Duca, 2023. "Environmental Impact Assessment of Frozen Peas Production from Conventional and Organic Farming in Italy," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    15. Harjinder Kaur & Raghava R Kommalapati, 2021. "Biochemical Methane Potential and Kinetic Parameters of Goat Manure at Various Inoculum to Substrate Ratios," Sustainability, MDPI, vol. 13(22), pages 1-10, November.
    16. Andy Yuille & Shane Rothwell & Lynsay Blake & Kirsty J. Forber & Rachel Marshall & Richard Rhodes & Claire Waterton & Paul J. A. Withers, 2022. "UK Government Policy and the Transition to a Circular Nutrient Economy," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    17. Rolandas Drejeris & Astrida Miceikienė, 2018. "Multi-Criteria Measurement of Sustainable Innovativeness in Farming Organisations: Evidence from Lithuania," Sustainability, MDPI, vol. 10(9), pages 1-14, September.
    18. Marlena Gołaś & Piotr Sulewski & Adam Wąs & Anna Kłoczko-Gajewska & Kinga Pogodzińska, 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    19. Ewa Szalińska & Paulina Orlińska-Woźniak & Paweł Wilk, 2018. "Nitrate Vulnerable Zones Revision in Poland—Assessment of Environmental Impact and Land Use Conflicts," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    20. Xu, Yuelu & Elbakidze, Levan & Yen, Haw & Arnold, Jeffrey G. & Gassman, Philip W. & Hubbart, Jason & Strager, Michael P., 2022. "Integrated assessment of nitrogen runoff to the Gulf of Mexico," Resource and Energy Economics, Elsevier, vol. 67(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:11:y:2016:i:3:id:15-2015-swr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.