IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v69y2023i1id420-2022-pse.html
   My bibliography  Save this article

Combined effect of nitrogen and phosphorous fertiliser on nitrogen absorption and utilisation in rice

Author

Listed:
  • Yating Zheng

    (Rice Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, P.R. China)

  • Hong Chen

    (Rice Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, P.R. China)

  • Guotao Yang

    (Rice Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, P.R. China)

  • Rudan Wang

    (Rice Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, P.R. China)

  • Nabi Farhan

    (Rice Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, P.R. China)

  • Chong Li

    (Rice Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, P.R. China)

  • Cheng Liang

    (Rice Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, P.R. China)

  • Kaiqin Shen

    (Rice Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, P.R. China)

  • Xuechun Wang

    (Rice Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, P.R. China)

  • Yungao Hu

    (Rice Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, P.R. China)

Abstract

The objectives of this study were to investigate the nitrogen (N) and phosphorus (P) balance fertilization strategy in paddy fields, and to evaluate the effects on N uptake and utilization in rice. In 2017-2018, the experiment was conducted using Deyou4727 hybrid rice with four different P fertilizer levels (0, 30, 60, and 90 kg/ha), marked as P0, P1, P2, P3 in turn, and four different N levels (0, 90, 150, and 270 kg/ha), similarly marked as N0, N1, N2, N3 in turn. The results showed that in the N-insufficient (N0, N1) environments, the P1 treatment increased N uptake and promoted transfer to the grain. However, high-P (P3) application increased the dry matter accumulation than other P levels, but limited the production and translocation of dry matter to some extent. In N-sufficient (N2, N3) environments, P2 level increased crop yield and N use efficiency by 11.35% and 37.01%. Unlike P2, none-P (P0) and high-P levels decreased rice dry matter translocation and transport capacity, which further affected N uptake and utilization in N-sufficient environments. Overall, the combination of the N application rate of 90 kg/ha and P application rate of 30 kg/ha, N application rate of 150, 270 kg/ha, and P application rate of 60 kg/ha had a high yield; strong nutrient accumulation and transfer ability. It was more inclined to balance N and P, which was beneficial to plant N absorption and utilization.

Suggested Citation

  • Yating Zheng & Hong Chen & Guotao Yang & Rudan Wang & Nabi Farhan & Chong Li & Cheng Liang & Kaiqin Shen & Xuechun Wang & Yungao Hu, 2023. "Combined effect of nitrogen and phosphorous fertiliser on nitrogen absorption and utilisation in rice," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(1), pages 25-37.
  • Handle: RePEc:caa:jnlpse:v:69:y:2023:i:1:id:420-2022-pse
    DOI: 10.17221/420/2022-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/420/2022-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/420/2022-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/420/2022-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Junfeng & Liu, Yanzhuo & Zhong, Xuhua & Lampayan, Rubenito M. & Singleton, Grant R. & Huang, Nongrong & Liang, Kaiming & Peng, Bilin & Tian, Ka, 2017. "Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China," Agricultural Water Management, Elsevier, vol. 184(C), pages 191-200.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Jiankai & Yang, Qiliang & Liang, Jiaping & Wang, Haidong & Yue, Xiulu, 2024. "Water management, planting slope indicators, and economic benefit analysis for Panax notoginseng production decision under shaded and rain-shelter cultivation: A three-year sloping fields experiment," Agricultural Water Management, Elsevier, vol. 291(C).
    2. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Wang, Hong & Zhang, Yan & Zhang, Yaojun & McDaniel, Marshall D. & Sun, Lan & Su, Wei & Fan, Xiaorong & Liu, Shuhua & Xiao, Xin, 2020. "Water-saving irrigation is a ‘win-win’ management strategy in rice paddies – With both reduced greenhouse gas emissions and enhanced water use efficiency," Agricultural Water Management, Elsevier, vol. 228(C).
    4. Li, Zhiming & Duan, Songpo & Ouyang, Xin & Song, Shijie & Chen, Diwen & Fan, Xianting & Ding, Hanqing & Shen, Hong, 2024. "Coupled soil moisture management and alginate oligosaccharide strategies enhance citrus orchard production, water and potassium use efficiency by improving the rhizosphere soil environment," Agricultural Water Management, Elsevier, vol. 297(C).
    5. Wei, Jun & Cui, Yuanlai & Zhou, Sihang & Luo, Yufeng, 2022. "Regional water-saving potential calculation method for paddy rice based on remote sensing," Agricultural Water Management, Elsevier, vol. 267(C).
    6. Liu, Jianliang & Huang, Xinya & Jiang, Haibo & Chen, Huai, 2021. "Sustaining yield and mitigating methane emissions from rice production with plastic film mulching technique," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    8. Yu, Qianan & Cui, Yuanlai, 2022. "Improvement and testing of ORYZA model water balance modules for alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Wang, Zhong-Jun & Yue, Fu-Jun & Wang, Yu-Chun & Qin, Cai-Qing & Ding, Hu & Xue, Li-Li & Li, Si-Liang, 2022. "The effect of heavy rainfall events on nitrogen patterns in agricultural surface and underground streams and the implications for karst water quality protection," Agricultural Water Management, Elsevier, vol. 266(C).
    10. Xiling Zhang & Yusheng Kong & Xuhui Ding, 2020. "How High-Quality Urbanization Affects Utilization Efficiency of Agricultural Water Resources in the Yellow River Basin under Double Control Action?," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    11. da Silva, Jaqueline Trombetta & Paniz, Fernanda Pollo & Sanchez, Fabiana e Silva & Pedron, Tatiana & Torres, Daiane Placido & da Rocha Concenço, Fernanda Izabel Garcia & Barbat Parfitt, José Maria & B, 2020. "Selected soil water tensions at phenological phases and mineral content of trace elements in rice grains – mitigating arsenic by water management," Agricultural Water Management, Elsevier, vol. 228(C).
    12. Xiaochuang Cao & Birong Qin & Qingxu Ma & Lianfeng Zhu & Chunquan Zhu & Yali Kong & Wenhao Tian & Qianyu Jin & Junhua Zhang & Yijun Yu, 2023. "Predicting the Nitrogen Quota Application Rate in a Double Rice Cropping System Based on Rice–Soil Nitrogen Balance and 15 N Labelling Analysis," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    13. Yu Sun & Yongcai Lai & Qi Wang & Qiulai Song & Liang Jin & Xiannan Zeng & Yanjiang Feng & Xinrui Lu, 2022. "Combination of Water-Saving Irrigation and Nitrogen Fertilization Regulates Greenhouse Gas Emissions and Increases Rice Yields in High-Cold Regions, Northeast China," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    14. Yusheng Hou & Zhenhua Wang & Huaijun Ding & Wenhao Li & Yue Wen & Jifeng Zhang & Yunqing Dou, 2019. "Evaluation of Suitable Amount of Water and Fertilizer for Mature Grapes in Drip Irrigation in Extreme Arid Regions," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
    15. Hua, Keji & He, Jun & Liao, Bin & He, Tianzhong & Yang, Peng & Zhang, Lei, 2023. "Multi-objective decision-making for efficient utilization of water and fertilizer in paddy fields: A case study in Southern China," Agricultural Water Management, Elsevier, vol. 289(C).
    16. Yong Wu & Li Li & Minzan Li & Man Zhang & Hong Sun & Nikolaos Sigrimis, 2020. "Optimal fertigation for high yield and fruit quality of greenhouse strawberry," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-17, April.
    17. Liu, Xiao & Li, Mo & Guo, Ping & Zhang, Zhongxue, 2019. "Optimization of water and fertilizer coupling system based on rice grain quality," Agricultural Water Management, Elsevier, vol. 221(C), pages 34-46.
    18. Feng Qu & Jingjing Jiang & Jiwen Xu & Tao Liu & Xiaohui Hu, 2019. "Drip irrigation and fertilization improve yield, uptake of nitrogen, and water-nitrogen use efficiency in cucumbers grown in substrate bags," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(6), pages 328-335.
    19. Willy Franz Gouertoumbo & Yousef Alhaj Hamoud & Xiangping Guo & Hiba Shaghaleh & Amar Ali Adam Hamad & Elsayed Elsadek, 2022. "Wheat Straw Burial Enhances the Root Physiology, Productivity, and Water Utilization Efficiency of Rice under Alternative Wetting and Drying Irrigation," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    20. Subhashisa Praharaj & Ratnesh Kumar Jha & Anil Kumar Singh & Shishir Kumar Gangwar & Rajendra Pratap Singh & Madhu Sudan Kundu & Abdus Sattar & Chelpuri Ramulu & Abhinav Kumar Singh & Surendra Singh J, 2023. "Climate-Resilient Rice Establishment Practices: Findings and Lessons from Two Villages in Bihar, India," Sustainability, MDPI, vol. 15(14), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:69:y:2023:i:1:id:420-2022-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.