IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v67y2021i5id67-2021-pse.html
   My bibliography  Save this article

Comparison of energy inputs and energy efficiency for maize in a long-term tillage experiment under Pannonian climate conditions

Author

Listed:
  • Gerhard Moitzi

    (Experimental Farm Groß-Enzersdorf, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Groß-Enzersdorf, Austria)

  • Reinhard W. Neugschwandtner

    (Institute of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria)

  • Hans-Peter Kaul

    (Institute of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria)

  • Helmut Wagentristl

    (Experimental Farm Groß-Enzersdorf, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Groß-Enzersdorf, Austria)

Abstract

Sustainable crop production requires an efficient usage of fossil energy. This six-year study on a silt loam soil (chernozem) analysed the energy efficiency of four tillage systems (mouldboard plough 25-30 cm, deep conservation tillage 35 cm, shallow conservation tillage 8-10 cm, no-tillage). Fuel consumption, total energy input (made up of both direct and indirect input), grain of maize yield, energy output, net-energy output, energy intensity and energy use efficiency were considered. The input rates of fertiliser, herbicides and seeds were set constant; measured values of fuel consumption were used for all tillage operations. Total fuel consumption for maize (Zea mays L.) production was 81.6, 81.5, 69.5 and 53.2 L/ha for the four tillage systems. Between 60% and 64% of the total energy input (17.0-17.4 GJ/ha) was indirect energy (seeds, fertiliser, herbicides, machinery). The share of fertiliser energy of the total energy input was 36% on average across all tillage treatments. Grain drying was the second highest energy consumer with about 22%. Grain yield and energy output were mainly determined by the year. The tillage effect on yield and energy efficiency was smaller than the growing year effect. Over all six years, maize produced in the no-tillage system reached the highest energy efficiency.

Suggested Citation

  • Gerhard Moitzi & Reinhard W. Neugschwandtner & Hans-Peter Kaul & Helmut Wagentristl, 2021. "Comparison of energy inputs and energy efficiency for maize in a long-term tillage experiment under Pannonian climate conditions," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(5), pages 299-306.
  • Handle: RePEc:caa:jnlpse:v:67:y:2021:i:5:id:67-2021-pse
    DOI: 10.17221/67/2021-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/67/2021-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/67/2021-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/67/2021-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerhard Moitzi & Reinhard W. Neugschwandtner & Hans-Peter Kaul & Helmut Wagentristl, 2021. "Effect of tillage systems on energy input and energy efficiency for sugar beet and soybean under Pannonian climate conditions," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(3), pages 137-146.
    2. Šarauskis, Egidijus & Buragienė, Sidona & Masilionytė, Laura & Romaneckas, Kęstutis & Avižienytė, Dovile & Sakalauskas, Antanas, 2014. "Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation," Energy, Elsevier, vol. 69(C), pages 227-235.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šarauskis, Egidijus & Masilionytė, Laura & Juknevičius, Darius & Buragienė, Sidona & Kriaučiūnienė, Zita, 2019. "Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation," Energy, Elsevier, vol. 172(C), pages 1151-1160.
    2. Suha Elsoragaby & A. F. Kheiralla & Elkamil Tola & Azmi Yahya & Modather Mairghany & Mojahid Ahmed & Wael M. Elamin & Bahaaddein K. M. Mahgoub, 2024. "Energy Utilization and Greenhouse Gas (GHG) Emissions of Tillage Operation in Wetland Rice Cultivation," Land, MDPI, vol. 13(5), pages 1-13, April.
    3. Justinas Anušauskas & Andrius Grigas & Kristina Lekavičienė & Ernestas Zaleckas & Simona Paulikienė & Dainius Steponavičius, 2024. "Energy and Environmental Assessment of Bacteria-Inoculated Mineral Fertilizer Used in Spring Barley Cultivation Technologies," Agriculture, MDPI, vol. 14(4), pages 1-22, April.
    4. Šarauskis, Egidijus & Romaneckas, Kęstutis & Jasinskas, Algirdas & Kimbirauskienė, Rasa & Naujokienė, Vilma, 2020. "Improving energy efficiency and environmental mitigation through tillage management in faba bean production," Energy, Elsevier, vol. 209(C).
    5. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    6. Mykola Kochiieru & Agnė Veršulienė & Virginijus Feiza & Dalia Feizienė, 2023. "Trend for Soil CO 2 Efflux in Grassland and Forest Land in Relation with Meteorological Conditions and Root Parameters," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    7. Pawlak, Jan, 2018. "Assessment of economic effects of GHG emission reduction on the example of field crop farms," Problems of Agricultural Economics / Zagadnienia Ekonomiki Rolnej 276380, Institute of Agricultural and Food Economics - National Research Institute (IAFE-NRI).
    8. Fan Fan & Bei Li & Weifeng Zhang & John R. Porter & Fusuo Zhang, 2021. "Evaluation of Sustainability of Irrigated Crops in Arid Regions, China," Sustainability, MDPI, vol. 13(1), pages 1-15, January.
    9. Manzone, Marco & Calvo, Angela, 2016. "Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy," Renewable Energy, Elsevier, vol. 86(C), pages 675-681.
    10. Šiaudinis, Gintaras & Jasinskas, Algirdas & Šarauskis, Egidijus & Steponavičius, Dainius & Karčauskienė, Danutė & Liaudanskienė, Inga, 2015. "The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico–mechanical properties and energy expenses," Energy, Elsevier, vol. 93(P1), pages 606-612.
    11. Manzone, Marco, 2015. "Energy consumption and CO2 analysis of different types of chippers used in wood biomass plantations," Applied Energy, Elsevier, vol. 156(C), pages 686-692.
    12. Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
    13. Townsend, Toby J. & Ramsden, Stephen J. & Wilson, Paul, 2016. "Analysing reduced tillage practices within a bio-economic modelling framework," Agricultural Systems, Elsevier, vol. 146(C), pages 91-102.
    14. Bunyod Holmatov & Arjen Y. Hoekstra & Maarten S. Krol, 2022. "EU’s bioethanol potential from wheat straw and maize stover and the environmental footprint of residue-based bioethanol," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-18, January.
    15. Manzone, Marco & Calvo, Angela, 2017. "Woodchip transportation: Climatic and congestion influence on productivity, energy and CO2 emission of agricultural and industrial convoys," Renewable Energy, Elsevier, vol. 108(C), pages 250-259.
    16. Xuezhang Li & Benhui Wei & Xianli Xu & Jia Zhou, 2020. "Effect of Deep Vertical Rotary Tillage on Soil Properties and Sugarcane Biomass in Rainfed Dry-Land Regions of Southern China," Sustainability, MDPI, vol. 12(23), pages 1-19, December.
    17. Keshavarz-Afshar, Reza & Mohammed, Yesuf Assen & Chen, Chengci, 2015. "Energy balance and greenhouse gas emissions of dryland camelina as influenced by tillage and nitrogen," Energy, Elsevier, vol. 91(C), pages 1057-1063.
    18. Qi Wang & Longtu Zhu & Mingwei Li & Dongyan Huang & Honglei Jia, 2018. "Conservation Agriculture Using Coulters: Effects of Crop Residue on Working Performance," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    19. Houshyar, Ehsan & Zareifard, Hamid Reza & Grundmann, Philipp & Smith, Pete, 2015. "Determining efficiency of energy input for silage corn production: An econometric approach," Energy, Elsevier, vol. 93(P2), pages 2166-2174.
    20. Wang, Chong & Zhao, Jiongchao & Feng, Yupeng & Shang, Mengfei & Bo, Xiaozhi & Gao, Zhenzhen & Chen, Fu & Chu, Qingquan, 2021. "Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems," Agricultural Water Management, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:67:y:2021:i:5:id:67-2021-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.