IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v63y2017i1id673-2016-pse.html
   My bibliography  Save this article

Yield and chemical composition of soybean seed under different irrigation regimes in the Vojvodina region

Author

Listed:
  • Branka KRESOVIĆ

    (Maize Research Institute Zemun Polje, Belgrade, Serbia)

  • Bosko Andrija GAJIC

    (University of Belgrade, Faculty of Agriculture, Belgrade, Serbia)

  • Angelina TAPANAROVA

    (University of Belgrade, Faculty of Agriculture, Belgrade, Serbia)

  • Goran DUGALIĆ

    (University of Kragujevac, Faculty of Agronomy Čačak, Čačak)

Abstract

The goal of the present research is to determine an effective sprinkler irrigation strategy for soybean [Glycine max (L.) Merr.] in temperate climate conditions, in order to maximize yields and seed quality. A three-year field experiment with four different irrigation treatments was conducted on Calcic Chernozem in the Vojvodina region of Serbia. The irrigation regimes included: no irrigation; full irrigation (I100); and two deficit irrigation treatments - 65% of I100 (I65) and 40% of I100. The irrigation treatments generally had a statistically significant effect on the increase of soybean yield and protein content. Irrigation did not have a significant effect on the oil content. In general, irrigation increased K, P, Mg, Mn, Cu, Zn and B concentrations and decreased Ca and Fe concentrations in soybean seed. The results show that irrigation with the largest amount of water (treatment I100) provided no potential benefit in terms of soybean yield and chemical composition. Treatment I65, which exhibited the most favourable watering conditions, is the best choice to maximize yield and ensure a good chemical composition of soybean under these agroecological conditions.

Suggested Citation

  • Branka KRESOVIĆ & Bosko Andrija GAJIC & Angelina TAPANAROVA & Goran DUGALIĆ, 2017. "Yield and chemical composition of soybean seed under different irrigation regimes in the Vojvodina region," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(1), pages 34-39.
  • Handle: RePEc:caa:jnlpse:v:63:y:2017:i:1:id:673-2016-pse
    DOI: 10.17221/673/2016-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/673/2016-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/673/2016-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/673/2016-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Candogan, Burak Nazmi & Sincik, Mehmet & Buyukcangaz, Hakan & Demirtas, Cigdem & Goksoy, Abdurrahim Tanju & Yazgan, Senih, 2013. "Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 113-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    2. Liu, Lining & Wang, Tianshu & Wang, Lichun & Wu, Xun & Zuo, Qiang & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2022. "Plant water deficit index-based irrigation under conditions of salinity," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Shi, Jianchu & Wu, Xun & Wang, Xiaoyu & Zhang, Mo & Han, Le & Zhang, Wenjing & Liu, Wen & Zuo, Qiang & Wu, Xiaoguang & Zhang, Hongfei & Ben-Gal, Alon, 2020. "Determining threshold values for root-soil water weighted plant water deficit index based smart irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    4. Montoya, F. & García, C. & Pintos, F. & Otero, A., 2017. "Effects of irrigation regime on the growth and yield of irrigated soybean in temperate humid climatic conditions," Agricultural Water Management, Elsevier, vol. 193(C), pages 30-45.
    5. Tafadzwanashe Mabhaudhi & Tendai Chibarabada & Albert Modi, 2016. "Water-Food-Nutrition-Health Nexus: Linking Water to Improving Food, Nutrition and Health in Sub-Saharan Africa," IJERPH, MDPI, vol. 13(1), pages 1-19, January.
    6. Morales-Santos, Angela & Nolz, Reinhard, 2023. "Assessment of canopy temperature-based water stress indices for irrigated and rainfed soybeans under subhumid conditions," Agricultural Water Management, Elsevier, vol. 279(C).
    7. Xie, Shuhua & Leib, Brian G. & Farhadi-Machekposhti, Mabood & Grant, Timothy James & Adotey, Nutifafa & Butler, David M., 2024. "Soybean yield response to managed depletion irrigation regimes in a Mid-South silt loam soil," Agricultural Water Management, Elsevier, vol. 292(C).
    8. Zhang, Xiaoyu & Zhang, Xiying & Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying, 2015. "Incorporating root distribution factor to evaluate soil water status for winter wheat," Agricultural Water Management, Elsevier, vol. 153(C), pages 32-41.
    9. Henrique Figueiredo Moura da Silva, Evandro & Boote, Kenneth J. & Hoogenboom, Gerrit & Gonçalves, Alexandre Ortega & Junior, Aderson Soares Andrade & Marin, Fabio Ricardo, 2021. "Performance of the CSM-CROPGRO-soybean in simulating soybean growth and development and the soil water balance for a tropical environment," Agricultural Water Management, Elsevier, vol. 252(C).
    10. Liu, Lining & Zuo, Qiang & Shi, Jianchu & Wu, Xun & Wei, Congmin & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Balancing economic benefits and environmental repercussions based on smart irrigation by regulating root zone water and salinity dynamics," Agricultural Water Management, Elsevier, vol. 285(C).
    11. Singh, Jasreman & Ge, Yufeng & Heeren, Derek M. & Walter-Shea, Elizabeth & Neale, Christopher M.U. & Irmak, Suat & Woldt, Wayne E. & Bai, Geng & Bhatti, Sandeep & Maguire, Mitchell S., 2021. "Inter-relationships between water depletion and temperature differential in row crop canopies in a sub-humid climate," Agricultural Water Management, Elsevier, vol. 256(C).
    12. Shi, Jianchu & Wu, Xun & Zhang, Mo & Wang, Xiaoyu & Zuo, Qiang & Wu, Xiaoguang & Zhang, Hongfei & Ben-Gal, Alon, 2021. "Numerically scheduling plant water deficit index-based smart irrigation to optimize crop yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 248(C).
    13. Zeleke, Ketema & Nendel, Claas, 2024. "Yield response and water productivity of soybean (Glycine max L.) to deficit irrigation and sowing time in south-eastern Australia," Agricultural Water Management, Elsevier, vol. 296(C).
    14. Zhang, Bangbang & Feng, Gary & Ahuja, Lajpat R. & Kong, Xiangbin & Ouyang, Ying & Adeli, Ardeshir & Jenkins, Johnie N., 2018. "Soybean crop-water production functions in a humid region across years and soils determined with APEX model," Agricultural Water Management, Elsevier, vol. 204(C), pages 180-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:63:y:2017:i:1:id:673-2016-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.