IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v65y2019i9id46-2019-jfs.html
   My bibliography  Save this article

Forest management decision-making using goal programming and fuzzy analytic hierarchy process approaches (case study: Hyrcanian forests of Iran)

Author

Listed:
  • Seyedeh Soma Etemad

    (Department of Forestry, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran)

  • Soleiman Mohammadi Limaei

    (Department of Forestry, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
    Department of Economics, Geography, Law and Tourism, Faculty of Human Sciences, Mid Sweden University, Sundsvall, Sweden)

  • Leif Olsson

    (Department of Information Systems and Technology, Faculty of Sciences, Technology and Media, Mid Sweden University, Sundsvall, Sweden)

  • Rasoul Yousefpour

    (Department of Forestry Economics and Forest Planning, University of Freiburg, Freiburg, Germany)

Abstract

The aim of this study is to determine the optimum stock level in the forest. In this research, a goal programming method was used to estimate the optimal stock level of different tree species considering environmental, economic and social issues. We consider multiple objectives in the process of decision-making to maximize carbon sequestration, net present value and labour. We used regression analysis to make a forest growth model and allometric functions for the quantification of carbon budget. Expected mean price is estimated using wood price and variable harvesting costs to determine the net present value of forest harvesting. The fuzzy analytic hierarchy process is applied to determine the weights of goals using questionnaires filled in by experts in order to generate the optimal stock level. According to the results of integrated goal programming approach and fuzzy analytic hierarchy processes, optimal volume for each species was calculated. The findings indicate that environmental, economic and social outcomes can be achieved in a multi-objective forestry program for the future forest management plans.

Suggested Citation

  • Seyedeh Soma Etemad & Soleiman Mohammadi Limaei & Leif Olsson & Rasoul Yousefpour, 2019. "Forest management decision-making using goal programming and fuzzy analytic hierarchy process approaches (case study: Hyrcanian forests of Iran)," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 65(9), pages 368-379.
  • Handle: RePEc:caa:jnljfs:v:65:y:2019:i:9:id:46-2019-jfs
    DOI: 10.17221/46/2019-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/46/2019-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/46/2019-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/46/2019-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    2. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsen Mostafa & Nishtman Hatami & Kambiz Espahbodi & Farhad Asadi, 2022. "Fuzzy Analytic Hierarchy Process (FAHP) applied to evaluating the forest management approaches," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 68(7), pages 263-276.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    2. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    3. Raman Kumar Goyal & Sakshi Kaushal, 2018. "Deriving crisp and consistent priorities for fuzzy AHP-based multicriteria systems using non-linear constrained optimization," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 195-209, June.
    4. Behnoosh Matani & Babak Shirazi & Javad Soltanzadeh, 2019. "F-MaMcDm: Sustainable Green-Based Hydrogen Production Technology Roadmap Using Fuzzy Multi-Aspect Multi-Criteria Decision-Making," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1-32, December.
    5. Somsuk, Nisakorn & Laosirihongthong, Tritos, 2014. "A fuzzy AHP to prioritize enabling factors for strategic management of university business incubators: Resource-based view," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 198-210.
    6. Fujun Hou, 2016. "Market Competitiveness Evaluation of Mechanical Equipment with a Pairwise Comparisons Hierarchical Model," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-18, January.
    7. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    8. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    9. Devendra K. Yadav & Akhilesh Barve, 2019. "Prioritization of cyclone preparedness activities in humanitarian supply chains using fuzzy analytical network process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 683-726, June.
    10. Caprioli, Caterina & Bottero, Marta, 2021. "Addressing complex challenges in transformations and planning: A fuzzy spatial multicriteria analysis for identifying suitable locations for urban infrastructures," Land Use Policy, Elsevier, vol. 102(C).
    11. Pınar Kaya Samut, 2017. "Integrated FANP-f-MIGP model for supplier selection in the renewable energy sector," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(3), pages 427-450, May.
    12. Grošelj, Petra & Hodges, Donald G. & Zadnik Stirn, Lidija, 2016. "Participatory and multi-criteria analysis for forest (ecosystem) management: A case study of Pohorje, Slovenia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 80-86.
    13. Rajesh Kr Singh & Sachin Kumar Mangla & Manjot Singh Bhatia & Sunil Luthra, 2022. "Integration of green and lean practices for sustainable business management," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 353-370, January.
    14. Kayakutlu, Gülgün & Büyüközkan, Gülçin, 2008. "Assessing knowledge-based resources in a utility company: Identify and prioritise the balancing factors," Energy, Elsevier, vol. 33(7), pages 1027-1037.
    15. Badreya Gharib Khamis Mohammed Alblooshi & Syed Zamberi Ahmad & Matloub Hussain & Sanjay Kumar Singh, 2022. "Sustainable management of electronic waste: Empirical evidences from a stakeholders' perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1856-1874, May.
    16. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.
    17. Mohamed Hanine & Omar Boutkhoum & Tarik Agouti & Abdessadek Tikniouine, 2017. "A new integrated methodology using modified Delphi-fuzzy AHP-PROMETHEE for Geospatial Business Intelligence selection," Information Systems and e-Business Management, Springer, vol. 15(4), pages 897-925, November.
    18. Mohamed Hanine & Omar Boutkhoum & Abderrafie El Maknissi & Abdessadek Tikniouine & Tarik Agouti, 2016. "Decision making under uncertainty using PEES–fuzzy AHP–fuzzy TOPSIS methodology for landfill location selection," Environment Systems and Decisions, Springer, vol. 36(4), pages 351-367, December.
    19. Elleuch, Mohamed Ali & Anane, Makram & Euchi, Jalel & Frikha, Ahmed, 2019. "Hybrid fuzzy multi-criteria decision making to solve the irrigation water allocation problem in the Tunisian case," Agricultural Systems, Elsevier, vol. 176(C).
    20. Muhammad Mohsin & Yin Hengbin & Zhang Luyao & Li Rui & Qian Chong & Ana Mehak, 2022. "An Application of Multiple-Criteria Decision Analysis for Risk Prioritization and Management: A Case Study of the Fisheries Sector in Pakistan," Sustainability, MDPI, vol. 14(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:65:y:2019:i:9:id:46-2019-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.