IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v53y2007i9id2142-jfs.html
   My bibliography  Save this article

Influence of stand density, thinning and elevated CO2 on stem wood density of spruce

Author

Listed:
  • I. Tomášková

    (Laboratory of Plants Ecological Physiology, Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, Brno, Czech Republic)

  • R. Pokorný

    (Laboratory of Plants Ecological Physiology, Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, Brno, Czech Republic)

  • M. V. Marek

    (Laboratory of Plants Ecological Physiology, Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
    Faculty of Forestry and Wood Technology, Mendel University of Agriculture and Forestry Brno, Brno, Czech Republic)

Abstract

Stem wood density (SWD) of young Norway spruce trees (Picea abies [L.] Karst.) growing at ambient (A variant, 350 µmol(CO2)/mol) and elevated (E variant, A + 350 µmol(CO2)/mol) atmospheric CO2 concentration inside of the glass domes with adjustable windows was estimated after six and eight years of the cultivation. Stand density of two subvariants (s - sparse with ca 5,000 trees/ha and d - dense with ca 10,000 trees/ha) and thinning impact (intensity of 27%) on SWD and its variation along the stem vertical profile were investigated. After six years of CO2 fumigation, stems of sparse subvariant had about 10% lower values of SWD comparing to dense ones, although the difference was not statistically significant. In 2004 (two years after thinning), the SWD values were higher in all subvariants along the whole stem vertical profile. This increase was more obvious in E variant (about 6% in d subvariant and only 3% in s subvariant). The highest increase of SWD values was found in Ed subvariant, particularly in the middle stem part (about 8%, statistically significant increase).

Suggested Citation

  • I. Tomášková & R. Pokorný & M. V. Marek, 2007. "Influence of stand density, thinning and elevated CO2 on stem wood density of spruce," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 53(9), pages 400-405.
  • Handle: RePEc:caa:jnljfs:v:53:y:2007:i:9:id:2142-jfs
    DOI: 10.17221/2142-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/2142-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/2142-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/2142-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ram Oren & David S. Ellsworth & Kurt H. Johnsen & Nathan Phillips & Brent E. Ewers & Chris Maier & Karina V.R. Schäfer & Heather McCarthy & George Hendrey & Steven G. McNulty & Gabriel G. Katul, 2001. "Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere," Nature, Nature, vol. 411(6836), pages 469-472, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bielsa, Jorge & Cazcarro, Ignacio & Sancho, Yolanda, 2011. "Integration of hydrological and economic approaches to water and land management in Mediterranean climates: an initial case study in agriculture," MPRA Paper 36445, University Library of Munich, Germany.
    2. Tong Qiu & Robert Andrus & Marie-Claire Aravena & Davide Ascoli & Yves Bergeron & Roberta Berretti & Daniel Berveiller & Michal Bogdziewicz & Thomas Boivin & Raul Bonal & Don C. Bragg & Thomas Caignar, 2022. "Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Binkley, Clark S. & Brand, David & Harkin, Zoe & Bull, Gary & Ravindranath, N. H. & Obersteiner, Michael & Nilsson, Sten & Yamagata, Yoshiki & Krott, Max, 2002. "Carbon sink by the forest sector--options and needs for implementation," Forest Policy and Economics, Elsevier, vol. 4(1), pages 65-77, May.
    4. Zhonghe Zhao & Gaohuan Liu & Naixia Mou & Yichun Xie & Zengrang Xu & Yong Li, 2018. "Assessment of Carbon Storage and Its Influencing Factors in Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    5. Gaohuan Liu & Zhonghe Zhao, 2018. "Analysis of Carbon Storage and Its Contributing Factors—A Case Study in the Loess Plateau (China)," Energies, MDPI, vol. 11(6), pages 1-18, June.
    6. Churkina, Galina, 2008. "Modeling the carbon cycle of urban systems," Ecological Modelling, Elsevier, vol. 216(2), pages 107-113.
    7. Fangzheng Li & Shasha Lu & Yinan Sun & Xiong Li & Benye Xi & Weiqi Liu, 2015. "Integrated Evaluation and Scenario Simulation for Forest Ecological Security of Beijing Based on System Dynamics Model," Sustainability, MDPI, vol. 7(10), pages 1-29, October.
    8. Cairns, Robert D. & Lasserre, Pierre, 2006. "Implementing carbon credits for forests based on green accounting," Ecological Economics, Elsevier, vol. 56(4), pages 610-621, April.
    9. Mohamed Hemida Abd-Alla & Salem M. Al-Amri & Abdel-Wahab Elsadek El-Enany, 2023. "Enhancing Rhizobium –Legume Symbiosis and Reducing Nitrogen Fertilizer Use Are Potential Options for Mitigating Climate Change," Agriculture, MDPI, vol. 13(11), pages 1-26, November.
    10. Leilei Ding & Puchang Wang & Wen Zhang & Yu Zhang & Shige Li & Xin Wei & Xi Chen & Yujun Zhang & Fuli Yang, 2019. "Shrub Encroachment Shapes Soil Nutrient Concentration, Stoichiometry and Carbon Storage in an Abandoned Subalpine Grassland," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    11. Kefi, Sonia & Rietkerk, Max & Katul, Gabriel G., 2008. "Vegetation pattern shift as a result of rising atmospheric CO2 in arid ecosystems," Theoretical Population Biology, Elsevier, vol. 74(4), pages 332-344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:53:y:2007:i:9:id:2142-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.