IDEAS home Printed from https://ideas.repec.org/a/caa/jnlcjg/v54y2018i3id93-2017-cjgpb.html
   My bibliography  Save this article

Genotypic variation in pre- and post-anthesis dry matter remobilization in Iranian wheat cultivars: associations with stem characters and grain yield

Author

Listed:
  • Mehdi JOUDI

    (Meshkinshahr College of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran)

  • Wim VAN DEN ENDE

    (Lab of Molecular Plant Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium)

Abstract

The amount of carbohydrate accumulation and remobilization in the wheat stem can be estimated by monitoring changes in stem dry matter. Eighty-one wheat cultivars were examined in the Moghan region of Iran during the 2010-2011 and 2013-2014 growing seasons. Pre- and post-anthesis dry matter remobilization was quantified in the tested cultivars and their associations with stem characteristics and grain yield were investigated. There was substantial variation in stem length, weight, and specific weight among the tested cultivars. The majority of the cultivars did not show pre-anthesis dry matter remobilization in the stem or internodes. In contrast, most of them used stem dry matter that had been stored after anthesis, suggesting that under the given conditions, current photosynthesis along with post-anthesis dry matter remobilization could meet most of the sink demand. Generally, there were no significant associations between stem length and dry matter remobilization (r = -0.05 to 0.03; P ≥ 0.05). Stem weight (r = 0.42 to 0.65; P ≤ 0.01) and specific stem weight (r = 0.44 to 0.60; P ≤ 0.01) measured at 16 days after anthesis correlated positively and significantly with dry weight loss from the stem. Intriguingly, no clear relationships were found between dry matter remobilization and grain yield (r = -0.13 to 0.04; P ≥ 0.05), suggesting that there are no simple relationships between these traits. The association between dry matter remobilization and grain yield may be different depending on the examined cultivars.

Suggested Citation

  • Mehdi JOUDI & Wim VAN DEN ENDE, 2018. "Genotypic variation in pre- and post-anthesis dry matter remobilization in Iranian wheat cultivars: associations with stem characters and grain yield," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 54(3), pages 123-134.
  • Handle: RePEc:caa:jnlcjg:v:54:y:2018:i:3:id:93-2017-cjgpb
    DOI: 10.17221/93/2017-CJGPB
    as

    Download full text from publisher

    File URL: http://cjgpb.agriculturejournals.cz/doi/10.17221/93/2017-CJGPB.html
    Download Restriction: free of charge

    File URL: http://cjgpb.agriculturejournals.cz/doi/10.17221/93/2017-CJGPB.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/93/2017-CJGPB?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ludwig, Fulco & Asseng, Senthold, 2010. "Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates," Agricultural Systems, Elsevier, vol. 103(3), pages 127-136, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Li Liu & Garry J. O’Leary & Brendan Christy & Ian Macadam & Bin Wang & Muhuddin R. Anwar & Anna Weeks, 2017. "Effects of different climate downscaling methods on the assessment of climate change impacts on wheat cropping systems," Climatic Change, Springer, vol. 144(4), pages 687-701, October.
    2. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    3. A. Potgieter & H. Meinke & A. Doherty & V. Sadras & G. Hammer & S. Crimp & D. Rodriguez, 2013. "Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia," Climatic Change, Springer, vol. 117(1), pages 163-179, March.
    4. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    5. Kleinwechter, Ulrich & Gastelo, Manuel & Ritchie, Joe & Nelson, Gerald & Asseng, Senthold, 2016. "Simulating cultivar variations in potato yields for contrasting environments," Agricultural Systems, Elsevier, vol. 145(C), pages 51-63.
    6. Zunfu Lv & Yan Zhu & Xiaojun Liu & Hongbao Ye & Yongchao Tian & Feifei Li, 2018. "Climate change impacts on regional rice production in China," Climatic Change, Springer, vol. 147(3), pages 523-537, April.
    7. Katharina Waha & John Clarke & Kavina Dayal & Mandy Freund & Craig Heady & Irene Parisi & Elisabeth Vogel, 2022. "Past and future rainfall changes in the Australian midlatitudes and implications for agriculture," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    8. Ghanem, Michel Edmond & Marrou, Hélène & Biradar, Chandrashekhar & Sinclair, Thomas R., 2015. "Production potential of Lentil (Lens culinaris Medik.) in East Africa," Agricultural Systems, Elsevier, vol. 137(C), pages 24-38.
    9. Kothari, Kritika & Ale, Srinivasulu & Attia, Ahmed & Rajan, Nithya & Xue, Qingwu & Munster, Clyde L., 2019. "Potential climate change adaptation strategies for winter wheat production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    10. Jaime Gaona & Pilar Benito-Verdugo & José Martínez-Fernández & Ángel González-Zamora & Laura Almendra-Martín & Carlos Miguel Herrero-Jiménez, 2022. "Soil Moisture Outweighs Climatic Factors in Critical Periods for Rainfed Cereal Yields: An Analysis in Spain," Agriculture, MDPI, vol. 12(4), pages 1-22, April.
    11. Wang, Bin & Feng, Puyu & Chen, Chao & Liu, De Li & Waters, Cathy & Yu, Qiang, 2019. "Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 170(C), pages 9-18.
    12. He, Pinglin & Zhang, Shuhao & Wang, Lei & Ning, Jing, 2023. "Will environmental taxes help to mitigate climate change? A comparative study based on OECD countries," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1440-1464.
    13. Sun, Shuang & Yang, Xiaoguang & Lin, Xiaomao & Sassenrath, Gretchen F. & Li, Kenan, 2018. "Climate-smart management can further improve winter wheat yield in China," Agricultural Systems, Elsevier, vol. 162(C), pages 10-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlcjg:v:54:y:2018:i:3:id:93-2017-cjgpb. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.