IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v32y2016i2p89-102n3.html
   My bibliography  Save this article

Nonparametric estimation of risk measures of collective risks

Author

Listed:
  • Lauer Alexandra

    (Department of Mathematics, Saarland University, Postfach 151150, 66041 Saarbrücken, Germany)

  • Zähle Henryk

    (Department of Mathematics, Saarland University, Postfach 151150, 66041 Saarbrücken, Germany)

Abstract

We consider two nonparametric estimators for the risk measure of the sum of n i.i.d. individual insurance risks where the number of historical single claims that are used for the statistical estimation is of order n. This framework matches the situation that nonlife insurance companies are faced with within the scope of premium calculation. Indeed, the risk measure of the aggregate risk divided by n can be seen as a suitable premium for each of the individual risks. For both estimators divided by n we derive a sort of Marcinkiewicz–Zygmund strong law as well as a weak limit theorem. The behavior of the estimators for small to moderate n is studied by means of Monte-Carlo simulations.

Suggested Citation

  • Lauer Alexandra & Zähle Henryk, 2016. "Nonparametric estimation of risk measures of collective risks," Statistics & Risk Modeling, De Gruyter, vol. 32(2), pages 89-102, March.
  • Handle: RePEc:bpj:strimo:v:32:y:2016:i:2:p:89-102:n:3
    DOI: 10.1515/strm-2015-0014
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/strm-2015-0014
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/strm-2015-0014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2014. "Quasi-Hadamard differentiability of general risk functionals and its application," Papers 1401.3167, arXiv.org, revised Feb 2015.
    2. Freddy Delbaen, 2013. "A Remark on the Structure of Expectiles," Papers 1307.5881, arXiv.org.
    3. S. Pitts, 1994. "Nonparametric estimation of compound distributions with applications in insurance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 537-555, September.
    4. Volker Krätschmer & Alexander Schied & Henryk Zähle, 2014. "Comparative and qualitative robustness for law-invariant risk measures," Finance and Stochastics, Springer, vol. 18(2), pages 271-295, April.
    5. Wang, Shaun & Dhaene, Jan, 1998. "Comonotonicity, correlation order and premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 235-242, July.
    6. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2012. "Comparative and qualitative robustness for law-invariant risk measures," Papers 1204.2458, arXiv.org, revised Jan 2014.
    7. Belomestny, Denis & Krätschmer, Volker, 2010. "Central limit theorems for law-invariant coherent risk measures," SFB 649 Discussion Papers 2010-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Panjer, Harry H., 1981. "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 22-26, June.
    9. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauer, Alexandra & Zähle, Henryk, 2017. "Bootstrap consistency and bias correction in the nonparametric estimation of risk measures of collective risks," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 99-108.
    2. Krätschmer Volker & Schied Alexander & Zähle Henryk, 2015. "Quasi-Hadamard differentiability of general risk functionals and its application," Statistics & Risk Modeling, De Gruyter, vol. 32(1), pages 25-47, April.
    3. Henryk Zähle, 2022. "A concept of copula robustness and its applications in quantitative risk management," Finance and Stochastics, Springer, vol. 26(4), pages 825-875, October.
    4. Freddy Delbaen & Fabio Bellini & Valeria Bignozzi & Johanna F. Ziegel, 2014. "Risk measures with the CxLS property," Papers 1411.0426, arXiv.org.
    5. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2014. "Quasi-Hadamard differentiability of general risk functionals and its application," Papers 1401.3167, arXiv.org, revised Feb 2015.
    6. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    7. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    8. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    9. Mario Ghossoub & Jesse Hall & David Saunders, 2020. "Maximum Spectral Measures of Risk with given Risk Factor Marginal Distributions," Papers 2010.14673, arXiv.org.
    10. Niushan Gao & Denny Leung & Cosimo Munari & Foivos Xanthos, 2018. "Fatou property, representations, and extensions of law-invariant risk measures on general Orlicz spaces," Finance and Stochastics, Springer, vol. 22(2), pages 395-415, April.
    11. Xia Han & Ruodu Wang & Qinyu Wu, 2023. "Monotonic mean-deviation risk measures," Papers 2312.01034, arXiv.org, revised Aug 2024.
    12. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    13. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    14. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    15. Xue Dong He & Xianhua Peng, 2017. "Surplus-Invariant, Law-Invariant, and Conic Acceptance Sets Must be the Sets Induced by Value-at-Risk," Papers 1707.05596, arXiv.org, revised Jan 2018.
    16. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
    17. Corrado De Vecchi & Max Nendel & Jan Streicher, 2024. "Upper Comonotonicity and Risk Aggregation under Dependence Uncertainty," Papers 2406.19242, arXiv.org.
    18. Zähle, Henryk, 2016. "A definition of qualitative robustness for general point estimators, and examples," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 12-31.
    19. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    20. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:32:y:2016:i:2:p:89-102:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.