IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v26y2008i2p109-143n4.html
   My bibliography  Save this article

Mean and covariance matrix adaptive estimation for a weakly stationary process. Application in stochastic optimization

Author

Listed:
  • Guigues Vincent

Abstract

We introduce an adaptive algorithm to estimate the uncertain parameter of a stochastic optimization problem. The procedure estimates the one-step-ahead means, variances and covariances of a random process in a distribution-free and multidimensional framework when these means, variances and covariances are slowly varying on a given past interval. The quality of the approximate problem obtained when employing our estimation of the uncertain parameter is controlled in function of the number of components of the process and of the length of the largest past interval where the means, variances and covariances slowly vary. The procedure is finally applied to a portfolio selection model.

Suggested Citation

  • Guigues Vincent, 2008. "Mean and covariance matrix adaptive estimation for a weakly stationary process. Application in stochastic optimization," Statistics & Risk Modeling, De Gruyter, vol. 26(2), pages 109-143, March.
  • Handle: RePEc:bpj:strimo:v:26:y:2008:i:2:p:109-143:n:4
    DOI: 10.1524/stnd.2008.0916
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/stnd.2008.0916
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/stnd.2008.0916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Shapiro, 1993. "Asymptotic Behavior of Optimal Solutions in Stochastic Programming," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 829-845, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincent Guigues, 2012. "Nonparametric multivariate breakpoint detection for the means, variances, and covariances of a discrete time stochastic process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 857-882, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    2. Baha Alzalg & Asma Gafour, 2023. "Convergence of a Weighted Barrier Algorithm for Stochastic Convex Quadratic Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 490-515, February.
    3. Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
    4. Jose Blanchet & Karthyek Murthy & Nian Si, 2022. "Confidence regions in Wasserstein distributionally robust estimation [Distributionally robust groupwise regularization estimator]," Biometrika, Biometrika Trust, vol. 109(2), pages 295-315.
    5. Sujin Kim & Shane G. Henderson, 2007. "Adaptive Control Variates for Finite-Horizon Simulation," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 508-527, August.
    6. Hsieh, Yu-Wei & Shi, Xiaoxia & Shum, Matthew, 2022. "Inference on estimators defined by mathematical programming," Journal of Econometrics, Elsevier, vol. 226(2), pages 248-268.
    7. Sanjay Mehrotra & M. Gokhan Ozevin, 2009. "Decomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse," Operations Research, INFORMS, vol. 57(4), pages 964-974, August.
    8. G. Guerkan & A.Y. Oezge & S.M. Robinson, 1994. "Sample-Path Optimization in Simulation," Working Papers wp94070, International Institute for Applied Systems Analysis.
    9. Luofeng Liao & Christian Kroer, 2023. "Statistical Inference and A/B Testing for First-Price Pacing Equilibria," Papers 2301.02276, arXiv.org, revised Jun 2023.
    10. Rubinstein, Reuven Y., 1997. "Optimization of computer simulation models with rare events," European Journal of Operational Research, Elsevier, vol. 99(1), pages 89-112, May.
    11. Marcel Klatt & Axel Munk & Yoav Zemel, 2022. "Limit laws for empirical optimal solutions in random linear programs," Annals of Operations Research, Springer, vol. 315(1), pages 251-278, August.
    12. R.J.-B. Wets, 1994. "Challenges in Stochastic Programming," Working Papers wp94032, International Institute for Applied Systems Analysis.
    13. G.C. Pflug & A. Ruszczynski & R. Schultz, 1995. "On the Glivenko-Cantelli Problem in Stochastic Programming: Linear Recourse," Working Papers wp95003, International Institute for Applied Systems Analysis.
    14. Drezner, Zvi & Shiode, Shogo, 2007. "A distribution map for the one-median location problem on a network," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1266-1273, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:26:y:2008:i:2:p:109-143:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.