IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v4y2000i3n1.html
   My bibliography  Save this article

p-Value Adjustments for Multiple Tests for Nonlinearity

Author

Listed:
  • Psaradakis Zacharias

    (Birkbeck College, University of London)

Abstract

When the hypothesis of linearity of a univariate time series model is tested using a battery of tests for neglected nonlinearity, the probability of one or more tests' leading to a false rejection increases with the number of tests being performed. This paper discusses how this undesirable effect of multiple testing may be controlled by means of some simple and easily implemented procedures. Monte Carlo experiments are used to demonstrate the finite-sample effectiveness of the various methods, and an analysis of the nonlinearity properties of GDP data from five OECD countries is presented as an illustration.

Suggested Citation

  • Psaradakis Zacharias, 2000. "p-Value Adjustments for Multiple Tests for Nonlinearity," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 4(3), pages 1-8, October.
  • Handle: RePEc:bpj:sndecm:v:4:y:2000:i:3:n:1
    DOI: 10.2202/1558-3708.1059
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1558-3708.1059
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1558-3708.1059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barnett, William A. & Gallant, A. Ronald & Hinich, Melvin J. & Jungeilges, Jochen A. & Kaplan, Daniel T. & Jensen, Mark J., 1997. "A single-blind controlled competition among tests for nonlinearity and chaos," Journal of Econometrics, Elsevier, vol. 82(1), pages 157-192.
    2. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    3. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    4. Clive Granger & Tae-Hwy Lee, 1999. "The effect of aggregation on nonlinearity," Econometric Reviews, Taylor & Francis Journals, vol. 18(3), pages 259-269.
    5. William A. Barnett & A. Ronald Gallant & Melvin J. Hinich & Jochen A. Jungeilges & Daniel T. Kaplan, 2004. "A Single-Blind Controlled Competition Among Tests for Nonlinearity and Chaos," Contributions to Economic Analysis, in: Functional Structure and Approximation in Econometrics, pages 581-615, Emerald Group Publishing Limited.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zacharias Psaradakis & Marián Vávra, 2019. "Portmanteau tests for linearity of stationary time series," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 248-262, February.
    2. Jorge Belaire-Franch & Kwaku Opong, 2013. "A Time Series Analysis of U.K. Construction and Real Estate Indices," The Journal of Real Estate Finance and Economics, Springer, vol. 46(3), pages 516-542, April.
    3. Jorge Belaire-Franch & Dulce Contreras, 2004. "A power comparison among tests for time reversibility," Economics Bulletin, AccessEcon, vol. 3(23), pages 1-17.
    4. Steven Cook & Alan Speight, 2006. "International Business Cycle Asymmetry and Time Irreversible Nonlinearities," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(10), pages 1051-1065.
    5. Steven Cook & Alan Speight, 2005. "A deeper look at asymmetries in UK consumers' expenditure: the nonparametric analysis of 100 disaggregates," Applied Economics, Taylor & Francis Journals, vol. 37(8), pages 893-900.
    6. Aaron D. Smallwood, 2016. "A Monte Carlo Investigation of Unit Root Tests and Long Memory in Detecting Mean Reversion in I(0) Regime Switching, Structural Break, and Nonlinear Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 986-1012, June.
    7. Amélie Charles & Olivier Darné, 2009. "Variance‐Ratio Tests Of Random Walk: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 503-527, July.
    8. Dilip Kumar & Srinivasan Maheswaran, 2014. "Are major global stock markets efficient? An application of the martingale difference hypothesis with wild bootstrap," American Journal of Finance and Accounting, Inderscience Enterprises Ltd, vol. 3(2/3/4), pages 217-233.
    9. Belaire-Franch, Jorge & Opong, Kwaku K., 2005. "Some evidence of random walk behavior of Euro exchange rates using ranks and signs," Journal of Banking & Finance, Elsevier, vol. 29(7), pages 1631-1643, July.
    10. Steven Cook & Alan Speight, 2006. "Time deformation in UK consumers' expenditure: an empirical analysis of highly disaggregated data," Applied Economics Letters, Taylor & Francis Journals, vol. 13(8), pages 471-478.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T Tang, 2009. "Testing for Non-linearity in the Balancing Item of Balance of Payments Accounts: The Case of 20 Industrial Countries," Economic Issues Journal Articles, Economic Issues, vol. 14(2), pages 107-124, September.
    2. Theodore Panagiotidis, 2010. "Market efficiency and the Euro: the case of the Athens stock exchange," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 37(3), pages 237-251, July.
    3. Zacharias Psaradakis & Marián Vávra, 2019. "Portmanteau tests for linearity of stationary time series," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 248-262, February.
    4. Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
    5. Stan Hurn & Ralf Becker, 2009. "Testing for Nonlinearity in Mean in the Presence of Heteroskedasticity," Economic Analysis and Policy, Elsevier, vol. 39(2), pages 311-326, September.
    6. Matilla-Garcia, Mariano, 2007. "A non-parametric test for independence based on symbolic dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 31(12), pages 3889-3903, December.
    7. Psaradakis Zacharias & Spagnolo Nicola, 2002. "Power Properties of Nonlinearity Tests for Time Series with Markov Regimes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-16, November.
    8. Barnett, William A. & Serletis, Apostolos, 2000. "Martingales, nonlinearity, and chaos," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 703-724, June.
    9. Manfred M. Fischer & Wolfgang Koller, 2001. "Testing for Non-Linear Dependence in Univariate Time Series: An Empirical Investigation of the Austrian Unemployment Rate," ERSA conference papers ersa01p233, European Regional Science Association.
    10. Barnett, William A. & Serletis, Apostolos & Serletis, Demitre, 2015. "Nonlinear And Complex Dynamics In Economics," Macroeconomic Dynamics, Cambridge University Press, vol. 19(8), pages 1749-1779, December.
    11. Nesmith Travis D & Jones Barry E, 2008. "Linear Cointegration of Nonlinear Time Series with an Application to Interest Rate Dynamics," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-18, March.
    12. Pavlidis Efthymios G & Paya Ivan & Peel David A, 2010. "Specifying Smooth Transition Regression Models in the Presence of Conditional Heteroskedasticity of Unknown Form," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(3), pages 1-40, May.
    13. Belaire-Franch, Jorge, 2004. "Testing for non-linearity in an artificial financial market: a recurrence quantification approach," Journal of Economic Behavior & Organization, Elsevier, vol. 54(4), pages 483-494, August.
    14. Elena Rusticelli & Richard Ashley & Estela Bee Dagum & Douglas Patterson, 2009. "A New Bispectral Test for NonLinear Serial Dependence," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 279-293.
    15. Chihwa Kao & Yongmiao Hong, 2004. "Detecting Neglected Nonlinearity in Dynamic Panel Data with Time-Varying Conditional Heteroskedasticity," Econometric Society 2004 Far Eastern Meetings 753, Econometric Society.
    16. Lubos Briatka, 2006. "How Big is Big Enough? Justifying Results of the iid Test Based on the Correlation Integral in the Non-Normal World," CERGE-EI Working Papers wp308, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    17. Pena, Daniel & Rodriguez, Julio, 2005. "Detecting nonlinearity in time series by model selection criteria," International Journal of Forecasting, Elsevier, vol. 21(4), pages 731-748.
    18. Ralf Becker & Walter Enders & A. Stan Hurn, 2001. "Testing for Time Dependence in Parameters," Research Paper Series 58, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. repec:wyi:journl:002062 is not listed on IDEAS
    20. Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
    21. William A. Barnett & Melvin J. Hinich & Piyu Yue, 2011. "The Exact Theoretical Rational Expectations Monetary Aggregate," World Scientific Book Chapters, in: Financial Aggregation And Index Number Theory, chapter 2, pages 53-84, World Scientific Publishing Co. Pte. Ltd..

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:4:y:2000:i:3:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.