IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v22y2018i3p14n1.html
   My bibliography  Save this article

A simple solution of the spurious regression problem

Author

Listed:
  • Wang Cindy Shin-Huei

    (National Tsing Hua University, Department of Quantitative Finance, Hsinchu City, Taiwan)

  • Hafner Christian M.

    (Institut de statistique, biostatistique et sciences actuarielles, and CORE, Université catholique de Louvain, Voie du Roman Pays, 20, 1348Louvain-la-Neuve, Belgium)

Abstract

This paper develops a new estimator for cointegrating and spurious regressions by applying a two-stage generalized Cochrane-Orcutt transformation based on an autoregressive approximation framework, even though the exact form of the error term is unknown in practice. We prove that our estimator is consistent for a wide class of regressions. We further show that a convergent usual t-statistic based on our new estimator can be constructed for the spurious regression cases analyzed by (Granger, C. W. J., and P. Newbold. 1974. “Spurious Regressions in Econometrics.” Journal of Econometrics 74: 111–120) and (Granger, C. W. J., N. Hyung, and H. Jeon. 2001. “Spurious Regressions with Stationary Series.” Applied Economics 33: 899–904). The implementation of our estimator is easy since it does not necessitate estimation of the long-run variance. Simulation results indicate the good statistical properties of the new estimator in small and medium samples, and also consider a more general framework including multiple regressors and endogeneity.

Suggested Citation

  • Wang Cindy Shin-Huei & Hafner Christian M., 2018. "A simple solution of the spurious regression problem," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(3), pages 1-14, June.
  • Handle: RePEc:bpj:sndecm:v:22:y:2018:i:3:p:14:n:1
    DOI: 10.1515/snde-2015-0040
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2015-0040
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2015-0040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Choi, Chi-Young & Hu, Ling & Ogaki, Masao, 2008. "Robust estimation for structural spurious regressions and a Hausman-type cointegration test," Journal of Econometrics, Elsevier, vol. 142(1), pages 327-351, January.
    2. Plosser, Charles I. & Schwert*, G. William, 1978. "Money, income, and sunspots: Measuring economic relationships and the effects of differencing," Journal of Monetary Economics, Elsevier, vol. 4(4), pages 637-660, November.
    3. Dietmar Bauer & Martin Wagner, 2005. "Autoregressive Approximations of Multiple Frequency I(1) Processes," Economics Working Papers ECO2005/09, European University Institute.
    4. Ai Deng, 2014. "Understanding Spurious Regression in Financial Economics," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 122-150.
    5. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    6. Valkanov, Rossen, 2003. "Long-horizon regressions: theoretical results and applications," Journal of Financial Economics, Elsevier, vol. 68(2), pages 201-232, May.
    7. Haldrup, Niels, 1994. "The asymptotics of single-equation cointegration regressions with I(1) and I(2) variables," Journal of Econometrics, Elsevier, vol. 63(1), pages 153-181, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
    2. Gourieroux, Christian & Jasiak, Joann, 2010. "Inference for Noisy Long Run Component Process," MPRA Paper 98987, University Library of Munich, Germany.
    3. D. Ventosa-Santaulària, 2009. "Spurious Regression," Journal of Probability and Statistics, Hindawi, vol. 2009, pages 1-27, August.
    4. Francesca Iorio & Stefano Fachin, 2014. "Savings and investments in the OECD: a panel cointegration study with a new bootstrap test," Empirical Economics, Springer, vol. 46(4), pages 1271-1300, June.
    5. Andersen, Torben G. & Varneskov, Rasmus T., 2022. "Testing for parameter instability and structural change in persistent predictive regressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 361-386.
    6. Hao Jin & Si Zhang & Jinsuo Zhang, 2017. "Spurious regression due to neglected of non-stationary volatility," Computational Statistics, Springer, vol. 32(3), pages 1065-1081, September.
    7. Esther Stroe-Kunold & Joachim Werner, 2009. "A drunk and her dog: a spurious relation? Cointegration tests as instruments to detect spurious correlations between integrated time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(6), pages 913-940, November.
    8. René Lalonde & Zhenhua Zhu & Frédérick Demers, 2003. "Forecasting and Analyzing World Commodity Prices," Money Affairs, CEMLA, vol. 0(1), pages 1-30, January-J.
    9. Shintani, Mototsugu & Yabu, Tomoyoshi & Nagakura, Daisuke, 2012. "Spurious regressions in technical trading," Journal of Econometrics, Elsevier, vol. 169(2), pages 301-309.
    10. Qiu, Mei & Pinfold, John F. & Rose, Lawrence C., 2011. "Predicting foreign exchange movements using historic deviations from PPP," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 485-497, October.
    11. Torben G. Andersen & Rasmus T. Varneskov, 2018. "Consistent Inference for Predictive Regressions in Persistent VAR Economies," CREATES Research Papers 2018-09, Department of Economics and Business Economics, Aarhus University.
    12. Jin, Hao & Zhang, Jinsuo & Zhang, Si & Yu, Cong, 2013. "The spurious regression of AR(p) infinite-variance sequence in the presence of structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 25-40.
    13. Chevillon, Guillaume, 2017. "Robustness of Multistep Forecasts and Predictive Regressions at Intermediate and Long Horizons," ESSEC Working Papers WP1710, ESSEC Research Center, ESSEC Business School.
    14. Ghulam Ghouse & Saud Ahmad Khan & Atiq Ur Rehman & Muhammad Ishaq Bhatti, 2021. "ARDL as an Elixir Approach to Cure for Spurious Regression in Nonstationary Time Series," Mathematics, MDPI, vol. 9(22), pages 1-15, November.
    15. Marmol, Francesc, 1998. "Spurious regression theory with nonstationary fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 84(2), pages 233-250, June.
    16. Lee, Young-Sook & Kim, Tae-Hwan & Newbold, Paul, 2005. "Spurious nonlinear regressions in econometrics," Economics Letters, Elsevier, vol. 87(3), pages 301-306, June.
    17. Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2022. "The illusion of oil return predictability: The choice of data matters!," Journal of Banking & Finance, Elsevier, vol. 134(C).
    18. Coqueret, Guillaume & Deguest, Romain, 2024. "Unexpected opportunities in misspecified predictive regressions," European Journal of Operational Research, Elsevier, vol. 318(2), pages 686-700.
    19. Bandi, F.M. & Perron, B. & Tamoni, A. & Tebaldi, C., 2019. "The scale of predictability," Journal of Econometrics, Elsevier, vol. 208(1), pages 120-140.
    20. Carlos José García T. & Jorge Enrique Restrepo, 2003. "Price Inflation and Exchange Rate Pass-Trough in Chile," Money Affairs, CEMLA, vol. 0(1), pages 69-88, January-J.

    More about this item

    Keywords

    autoregressive approximation; cointegration; generalized Cochrane-Orcutt estimation; spurious regression;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:22:y:2018:i:3:p:14:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.