IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v19y2015i3p317-337n4.html
   My bibliography  Save this article

Panel conditional and multinomial logit with time-varying parameters

Author

Listed:
  • Lee Myoung-jae

    (Department of Economics, Korea University, Seoul 136-701, South Korea)

Abstract

Panel conditional logit estimators (PCLE) in the literature use mostly time-constant parameters. If the panel periods are volatile or long, however, the model parameters can change much. Hence this paper generalizes PCLE with time-constant parameters to PCLE with time-varying parameters; both static and dynamic PCLE are considered for this. The main finding is that time-varying parameters are fully allowed for static PCLE and the dynamic “pseudo” PCLE of [Bartolucci, F. and V. Nigro. 2010. “A Dynamic Model for Binary Panel Data with Unobserved Heterogeneity Admitting a n$\sqrt n$-Consistent Conditional Estimator.” Econometrica 78: 719–733] that are thus recommended to practitioners. As a further generalization, static “panel conditional multinomial logit estimator (PML)” with time-varying parameters is also examined. As it turns out, time-varying parameters are also fully allowed for PML. With no error term serial correlation allowed in PCLE and dynamic PCLE’s being restrictive in their assumptions, time-varying parameters provide an alternative avenue to inject dynamics and flexibility into PCLE and PML. Since PCLE and PML converge straightforwardly in computation, allowing time-varying parameters in PCLE and PML is “computationally free.” A simulation study is also provided.

Suggested Citation

  • Lee Myoung-jae, 2015. "Panel conditional and multinomial logit with time-varying parameters," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(3), pages 317-337, June.
  • Handle: RePEc:bpj:sndecm:v:19:y:2015:i:3:p:317-337:n:4
    DOI: 10.1515/snde-2014-0003
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2014-0003
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2014-0003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesco Bartolucci & Valentina Nigro, 2010. "A Dynamic Model for Binary Panel Data With Unobserved Heterogeneity Admitting a √n-Consistent Conditional Estimator," Econometrica, Econometric Society, vol. 78(2), pages 719-733, March.
    2. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318, Elsevier.
    3. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    4. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    5. Bartolucci, Francesco & Nigro, Valentina, 2012. "Pseudo conditional maximum likelihood estimation of the dynamic logit model for binary panel data," Journal of Econometrics, Elsevier, vol. 170(1), pages 102-116.
    6. Lee, Myoung-jae & Kim, Young-sook, 2007. "Multinomial choice and nonparametric average derivatives," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 63-81, January.
    7. Colin O. Wu & Kai F. Yu, 2002. "Nonparametric Varying-Coefficient Models for the Analysis of Longitudinal Data," International Statistical Review, International Statistical Institute, vol. 70(3), pages 373-393, December.
    8. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    9. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy Neal, 2016. "Multidimensional Parameter Heterogeneity in Panel Data Models," Discussion Papers 2016-15, School of Economics, The University of New South Wales.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lionel WILNER, 2019. "The Dynamics of Individual Happiness," Working Papers 2019-18, Center for Research in Economics and Statistics.
    2. Francesco Bartolucci & Claudia Pigini, 2018. "Partial effects estimation for fixed-effects logit panel data models," Working Papers 431, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    3. Francesco Bartolucci & Claudia Pigini, 2017. "Granger causality in dynamic binary short panel data models," Working Papers 421, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    4. Francesco Bartolucci & Claudia Pigini & Francesco Valentini, 2023. "Conditional inference and bias reduction for partial effects estimation of fixed-effects logit models," Empirical Economics, Springer, vol. 64(5), pages 2257-2290, May.
    5. Bartolucci, Francesco & Pigini, Claudia, 2017. "cquad: An R and Stata Package for Conditional Maximum Likelihood Estimation of Dynamic Binary Panel Data Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i07).
    6. Lucchetti, Riccardo & Pigini, Claudia, 2017. "DPB: Dynamic Panel Binary Data Models in gretl," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i08).
    7. Pigini, Claudia & Bartolucci, Francesco, 2022. "Conditional inference for binary panel data models with predetermined covariates," Econometrics and Statistics, Elsevier, vol. 23(C), pages 83-104.
    8. Yoshitsugu Kitazawa, 2013. "Exploration of dynamic fixed effects logit models from a traditional angle," Discussion Papers 60, Kyushu Sangyo University, Faculty of Economics.
    9. Francesco Bartolucci & Francesco Valentini & Claudia Pigini, 2023. "Recursive Computation of the Conditional Probability Function of the Quadratic Exponential Model for Binary Panel Data," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 529-557, February.
    10. Joseph G. Altonji & Rosa L. Matzkin, 2001. "Panel Data Estimators for Nonseparable Models with Endogenous Regressors," NBER Technical Working Papers 0267, National Bureau of Economic Research, Inc.
    11. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    12. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    13. Pierre-Carl Michaud & Konstantinos Tatsiramos, 2005. "Employment Dynamics of Married Women in Europe," Working Papers WR-273, RAND Corporation.
    14. Arellano, Manuel & Carrasco, Raquel, 2003. "Binary choice panel data models with predetermined variables," Journal of Econometrics, Elsevier, vol. 115(1), pages 125-157, July.
    15. Ken Clark & Nikolaos C. Kanellopoulos, 2009. "Low Pay Persistence in European Countries," SOEPpapers on Multidisciplinary Panel Data Research 207, DIW Berlin, The German Socio-Economic Panel (SOEP).
    16. Manuel Arellano, 2003. "Discrete choices with panel data," Investigaciones Economicas, Fundación SEPI, vol. 27(3), pages 423-458, September.
    17. Majid M. Al-Sadoon & Tong Li & M. Hashem Pesaran, 2017. "Exponential class of dynamic binary choice panel data models with fixed effects," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 898-927, October.
    18. Pauline Givord & Lionel Wilner, 2015. "When Does the Stepping‐Stone Work? Fixed‐Term Contracts Versus Temporary Agency Work in Changing Economic Conditions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(5), pages 787-805, August.
    19. Hugo Kruiniger, 2021. "Root-n-consistent Conditional ML estimation of dynamic panel logit models with fixed effects," Papers 2103.04973, arXiv.org, revised Apr 2021.
    20. Ivan Fernandez-Val, 2005. "Estimation of Structural Parameters and Marginal Effects in Binary Choice Panel Data Models with Fixed Effects," Boston University - Department of Economics - Working Papers Series WP2005-38, Boston University - Department of Economics.

    More about this item

    Keywords

    binary choice; conditional logit; multinomial choice; panel data; time-varying parameters;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:19:y:2015:i:3:p:317-337:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.