IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v14y2010i4n6.html
   My bibliography  Save this article

A Nonlinear Algorithm for Seasonal Adjustment in Multiplicative Component Decompositions

Author

Listed:
  • McElroy Tucker S

    (U.S. Census Bureau)

Abstract

We propose a new model-based, nonlinear method for seasonally adjusting time series in a multiplicative components model. The method seeks to reduce the bias inherent in linear model-based approaches, while at the same time preserving the flexibility of parametric methods. We discuss the problem of bias and the concept of recovery, and demonstrate the favorable properties of the proposed algorithm on several synthetic series.

Suggested Citation

  • McElroy Tucker S, 2010. "A Nonlinear Algorithm for Seasonal Adjustment in Multiplicative Component Decompositions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-23, September.
  • Handle: RePEc:bpj:sndecm:v:14:y:2010:i:4:n:6
    DOI: 10.2202/1558-3708.1756
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1558-3708.1756
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1558-3708.1756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burridge, Peter & Wallis, Kenneth F, 1984. "Unobserved-Components Models for Seasonal Adjustment Filters," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 350-359, October.
    2. McElroy, Tucker & Sutcliffe, Andrew, 2006. "An iterated parametric approach to nonstationary signal extraction," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2206-2231, May.
    3. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    4. Ozaki, Tohru & Thomson, Peter, 2002. "A Non-linear Dynamic Model for Multiplicative Seasonal-Trend Decomposition," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(2), pages 107-124, March.
    5. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    6. McElroy, Tucker, 2008. "Matrix Formulas For Nonstationary Arima Signal Extraction," Econometric Theory, Cambridge University Press, vol. 24(4), pages 988-1009, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Dokumentov & Rob J. Hyndman, 2015. "STR: A Seasonal-Trend Decomposition Procedure Based on Regression," Monash Econometrics and Business Statistics Working Papers 13/15, Monash University, Department of Econometrics and Business Statistics.
    2. Wildi Marc & McElroy Tucker, 2016. "Optimal Real-Time Filters for Linear Prediction Problems," Journal of Time Series Econometrics, De Gruyter, vol. 8(2), pages 155-192, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guy Mélard, 2016. "On some remarks about SEATS signal extraction," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 53-98, March.
    2. Silhan, Peter A., 2014. "Income smoothing from a Census X-12 perspective," Advances in accounting, Elsevier, vol. 30(1), pages 106-115.
    3. A Matas-Mir & D R Osborn, 2003. "Seasonal Adjustment and the Detection of Business Cycle Phases," Economics Discussion Paper Series 0304, Economics, The University of Manchester.
    4. McElroy, Tucker S. & Jach, Agnieszka, 2023. "Identification of the differencing operator of a non-stationary time series via testing for zeroes in the spectral density," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    5. Víctor M. Guerrero & Adriana Galicia‐Vázquez, 2010. "Trend estimation of financial time series," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 205-223, May.
    6. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.
    7. McElroy, Tucker & Wildi, Marc, 2013. "Multi-step-ahead estimation of time series models," International Journal of Forecasting, Elsevier, vol. 29(3), pages 378-394.
    8. Maravall, Agustín, 2000. "Notes on time serie analysis, ARIMA models and signal extraction," DES - Working Papers. Statistics and Econometrics. WS 10058, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Webel, Karsten, 2016. "A data-driven selection of an appropriate seasonal adjustment approach," Discussion Papers 07/2016, Deutsche Bundesbank.
    10. Giancarlo Bruno & Edoardo Otranto, 2006. "The choice of time interval in seasonal adjustment: A heuristic approach," Statistical Papers, Springer, vol. 47(3), pages 393-417, June.
    11. Mauricio Gallardo & Hernán Rubio, 2009. "Diagnóstico de estacionalidad con X-12-ARIMA," Economic Statistics Series 76, Central Bank of Chile.
    12. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    13. Kroes, James R. & Manikas, Andrew S. & Gattiker, Thomas F., 2018. "Operational leanness and retail firm performance since 1980," International Journal of Production Economics, Elsevier, vol. 197(C), pages 262-274.
    14. Quenneville, Benoit & Ladiray, Dominique & Lefrancois, Bernard, 2003. "A note on Musgrave asymmetrical trend-cycle filters," International Journal of Forecasting, Elsevier, vol. 19(4), pages 727-734.
    15. Massmann, Michael & Mitchell, James, 2003. "Reconsidering the evidence: Are Eurozone business cycles converging," ZEI Working Papers B 05-2003, University of Bonn, ZEI - Center for European Integration Studies.
    16. Regina Kaiser & Agustín Maravall, 2000. "Notes on Time Series Analysis, ARIMA Models and Signal Extraction," Working Papers 0012, Banco de España.
    17. David F. Findley & Demetra P. Lytras & Agustin Maravall, 2016. "Illuminating ARIMA model-based seasonal adjustment with three fundamental seasonal models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 11-52, March.
    18. Hai Yue Liu & Xiao Lan Chen, 2017. "The imported price, inflation and exchange rate pass-through in China," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1279814-127, January.
    19. Henryk Gurgul & Marcin Suder, 2013. "The Properties of ATMs Development Stages - an Empirical Analysis," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(3), pages 443-466, September.
    20. Carlos A. Medel, 2018. "A Comparison Between Direct and Indirect Seasonal Adjustment of the Chilean GDP 1986–2009 with X-12-ARIMA," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 47-87, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:14:y:2010:i:4:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.