IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v8y2009i1n4.html
   My bibliography  Save this article

Dimension Reduction of Microarray Data in the Presence of a Censored Survival Response: A Simulation Study

Author

Listed:
  • Nguyen Tuan S

    (Rice University)

  • Rojo Javier

    (Rice University)

Abstract

An important aspect of microarray studies involves the prediction of patient survival based on their gene expression levels. To cope with the high dimensionality of the microarray gene expression data, it is customary to first reduce the dimension of the gene expression data via dimension reduction methods, and then use the Cox proportional hazards model to predict patient survival. In this paper, we propose a variant of Partial Least Squares, denoted as Rank-based Modified Partial Least Squares (RMPLS), that is insensitive to outlying values of both the response and the gene expressions. We assess the performance of RMPLS and several dimension reduction methods using a simulation model for gene expression data with a censored response. In particular, Principal Component Analysis (PCA), modified Partial Least Squares (MPLS), RMPLS, Sliced Inverse Regression (SIR), Correlation Principal Component Regression (CPCR), Supervised Principal Component Regression (SPCR) and Univariate Selection (UNIV) are compared in terms of mean squared error of the estimated survival function and the estimated coefficients of the covariates, and in terms of the bias of the estimated survival function. It turns out that RMPLS outperforms all other methods in terms of the mean squared error and the bias of the survival function in the presence of outliers in the response. In addition, RMPLS is comparable to MPLS in the absence of outliers. In this setting, both RMPLS and MPLS outperform all other methods considered in this study in terms of mean squared error and bias of the estimated survival function.

Suggested Citation

  • Nguyen Tuan S & Rojo Javier, 2009. "Dimension Reduction of Microarray Data in the Presence of a Censored Survival Response: A Simulation Study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-40, January.
  • Handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:4
    DOI: 10.2202/1544-6115.1395
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1395
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prasad Naik & Chih‐Ling Tsai, 2000. "Partial least squares estimator for single‐index models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 763-771.
    2. Nguyen, Danh V. & Rocke, D.M.David M., 2004. "On partial least squares dimension reduction for microarray-based classification: a simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 46(3), pages 407-425, June.
    3. Zhao Qiang & Sun Jianguo, 2007. "Cox Survival Analysis of Microarray Gene Expression Data Using Correlation Principal Component Regression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 6(1), pages 1-16, May.
    4. Dai Jian J & Lieu Linh & Rocke David, 2006. "Dimension Reduction for Classification with Gene Expression Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-21, February.
    5. Bair, Eric & Hastie, Trevor & Paul, Debashis & Tibshirani, Robert, 2006. "Prediction by Supervised Principal Components," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 119-137, March.
    6. Boulesteix Anne-Laure, 2004. "PLS Dimension Reduction for Classification with Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-32, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boulesteix Anne-Laure, 2006. "Reader's Reaction to "Dimension Reduction for Classification with Gene Expression Microarray Data" by Dai et al (2006)," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-7, June.
    2. Hansheng Wang & Chih‐Ling Tsai, 2009. "‘Model selection for generalized linear models with factor‐augmented predictors’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 241-242, May.
    3. Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
    4. Asuman Turkmen & Nedret Billor, 2013. "Partial least squares classification for high dimensional data using the PCOUT algorithm," Computational Statistics, Springer, vol. 28(2), pages 771-788, April.
    5. Ramos, Sandra & Amaral Turkman, Antónia & Antunes, Marília, 2010. "Bayesian classification for bivariate normal gene expression," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2012-2020, August.
    6. Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Econometrics, MDPI, vol. 6(3), pages 1-27, August.
    7. Tomohiro Ando & Ruey S. Tsay, 2009. "Model selection for generalized linear models with factor‐augmented predictors," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 207-235, May.
    8. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    9. Kui Shen & Nan Song & Youngchul Kim & Chunqiao Tian & Shara D Rice & Michael J Gabrin & W Fraser Symmans & Lajos Pusztai & Jae K Lee, 2012. "A Systematic Evaluation of Multi-Gene Predictors for the Pathological Response of Breast Cancer Patients to Chemotherapy," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    10. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
    11. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    12. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    13. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    14. Tommaso Proietti, 2016. "On the Selection of Common Factors for Macroeconomic Forecasting," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 593-628, Emerald Group Publishing Limited.
    15. Federico Pavone & Juho Piironen & Paul-Christian Bürkner & Aki Vehtari, 2023. "Using reference models in variable selection," Computational Statistics, Springer, vol. 38(1), pages 349-371, March.
    16. Min Cai & Hui Dai & Yongyong Qiu & Yang Zhao & Ruyang Zhang & Minjie Chu & Juncheng Dai & Zhibin Hu & Hongbing Shen & Feng Chen, 2013. "SNP Set Association Analysis for Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    17. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
    18. Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.
    19. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    20. Zambom, Adriano Zanin & Akritas, Michael G., 2015. "Nonparametric significance testing and group variable selection," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 51-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.