IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v3y2004i1n33.html
   My bibliography  Save this article

PLS Dimension Reduction for Classification with Microarray Data

Author

Listed:
  • Boulesteix Anne-Laure

    (Department of Statistics, University of Munich)

Abstract

Partial Least Squares (PLS) dimension reduction is known to give good prediction accuracy in the context of classification with high-dimensional microarray data. In this paper, the classification procedure consisting of PLS dimension reduction and linear discriminant analysis on the new components is compared with some of the best state-of-the-art classification methods. Moreover, a boosting algorithm is applied to this classification method. In addition, a simple procedure to choose the number of PLS components is suggested. The connection between PLS dimension reduction and gene selection is examined and a property of the first PLS component for binary classification is proved. In addition, we show how PLS can be used for data visualization using real data. The whole study is based on 9 real microarray cancer data sets.

Suggested Citation

  • Boulesteix Anne-Laure, 2004. "PLS Dimension Reduction for Classification with Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-32, November.
  • Handle: RePEc:bpj:sagmbi:v:3:y:2004:i:1:n:33
    DOI: 10.2202/1544-6115.1075
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1075
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Rohart & Benoît Gautier & Amrit Singh & Kim-Anh Lê Cao, 2017. "mixOmics: An R package for ‘omics feature selection and multiple data integration," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-19, November.
    2. Schmid Matthias & Hothorn Torsten & Krause Friedemann & Rabe Christina, 2012. "A PAUC-based Estimation Technique for Disease Classification and Biomarker Selection," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-26, October.
    3. Boulesteix Anne-Laure, 2006. "Reader's Reaction to "Dimension Reduction for Classification with Gene Expression Microarray Data" by Dai et al (2006)," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-7, June.
    4. Nguyen Tuan S & Rojo Javier, 2009. "Dimension Reduction of Microarray Data in the Presence of a Censored Survival Response: A Simulation Study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-40, January.
    5. González, Javier & Muñoz, Alberto, 2010. "Representing functional data in reproducing Kernel Hilbert Spaces with applications to clustering and classification," DES - Working Papers. Statistics and Econometrics. WS ws102713, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Lê Cao Kim-Anh & Rossouw Debra & Robert-Granié Christèle & Besse Philippe, 2008. "A Sparse PLS for Variable Selection when Integrating Omics Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-32, November.
    7. Chung Dongjun & Keles Sunduz, 2010. "Sparse Partial Least Squares Classification for High Dimensional Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-32, March.
    8. Asuman Turkmen & Nedret Billor, 2013. "Partial least squares classification for high dimensional data using the PCOUT algorithm," Computational Statistics, Springer, vol. 28(2), pages 771-788, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:3:y:2004:i:1:n:33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.