IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v11y2012i5n12.html
   My bibliography  Save this article

Large-scale Parentage Inference with SNPs: an Efficient Algorithm for Statistical Confidence of Parent Pair Allocations

Author

Listed:
  • Anderson Eric C.

    (Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA)

Abstract

Advances in genotyping that allow tens of thousands of individuals to be genotyped at a moderate number of single nucleotide polymorphisms (SNPs) permit parentage inference to be pursued on a very large scale. The intergenerational tagging this capacity allows is revolutionizing the management of cultured organisms (cows, salmon, etc.) and is poised to do the same for scientific studies of natural populations. Currently, however, there are no likelihood-based methods of parentage inference which are implemented in a manner that allows them to quickly handle a very large number of potential parents or parent pairs. Here we introduce an efficient likelihood-based method applicable to the specialized case of cultured organisms in which both parents can be reliably sampled. We develop a Markov chain representation for the cumulative number of Mendelian incompatibilities between an offspring and its putative parents and we exploit it to develop a fast algorithm for simulation-based estimates of statistical confidence in SNP-based assignments of offspring to pairs of parents. The method is implemented in the freely available software SNPPIT. We describe the method in detail, then assess its performance in a large simulation study using known allele frequencies at 96 SNPs from ten hatchery salmon populations. The simulations verify that the method is fast and accurate and that 96 well-chosen SNPs can provide sufficient power to identify the correct pair of parents from amongst millions of candidate pairs.

Suggested Citation

  • Anderson Eric C., 2012. "Large-scale Parentage Inference with SNPs: an Efficient Algorithm for Statistical Confidence of Parent Pair Allocations," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-28, November.
  • Handle: RePEc:bpj:sagmbi:v:11:y:2012:i:5:n:12
    DOI: 10.1515/1544-6115.1833
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/1544-6115.1833
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/1544-6115.1833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Almudevar, Anthony & LaCombe, Jason, 2012. "On the choice of prior density for the Bayesian analysis of pedigree structure," Theoretical Population Biology, Elsevier, vol. 81(2), pages 131-143.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cowell, Robert G., 2013. "A simple greedy algorithm for reconstructing pedigrees," Theoretical Population Biology, Elsevier, vol. 83(C), pages 55-63.
    2. Almudevar, Anthony, 2016. "An information theoretic approach to pedigree reconstruction," Theoretical Population Biology, Elsevier, vol. 107(C), pages 52-64.
    3. Anderson, Eric C. & Ng, Thomas C., 2016. "Bayesian pedigree inference with small numbers of single nucleotide polymorphisms via a factor-graph representation," Theoretical Population Biology, Elsevier, vol. 107(C), pages 39-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:11:y:2012:i:5:n:12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.