IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v10y2011i1n50.html
   My bibliography  Save this article

Unsupervised Classification for Tiling Arrays: ChIP-chip and Transcriptome

Author

Listed:
  • Bérard Caroline
  • Martin-Magniette Marie-Laure
  • Brunaud Véronique
  • Aubourg Sébastien
  • Robin Stéphane

Abstract

Tiling arrays make possible a large-scale exploration of the genome thanks to probes which cover the whole genome with very high density, up to 2,000,000 probes. Biological questions usually addressed are either the expression difference between two conditions or the detection of transcribed regions. In this work, we propose to consider both questions simultaneously as an unsupervised classification problem by modeling the joint distribution of the two conditions. In contrast to previous methods, we account for all available information on the probes as well as biological knowledge such as annotation and spatial dependence between probes. Since probes are not biologically relevant units, we propose a classification rule for non-connected regions covered by several probes. Applications to transcriptomic and ChIP-chip data of Arabidopsis thaliana obtained with a NimbleGen tiling array highlight the importance of a precise modeling and of the region classification. The "TAHMMAnnot" package is implemented in R and C and is freely available from CRAN.

Suggested Citation

  • Bérard Caroline & Martin-Magniette Marie-Laure & Brunaud Véronique & Aubourg Sébastien & Robin Stéphane, 2011. "Unsupervised Classification for Tiling Arrays: ChIP-chip and Transcriptome," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, November.
  • Handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:50
    DOI: 10.2202/1544-6115.1692
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1692
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fridlyand, Jane & Snijders, Antoine M. & Pinkel, Dan & Albertson, Donna G. & Jain, A.N.Ajay N., 2004. "Hidden Markov models approach to the analysis of array CGH data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 132-153, July.
    2. Gilles Celeux & Jean-Baptiste Durand, 2008. "Selecting hidden Markov model state number with cross-validated likelihood," Computational Statistics, Springer, vol. 23(4), pages 541-564, October.
    3. Sunduz Keles & Mark van der Laan & Sandrine Dudoit & Simon Cawley, 2004. "Multiple Testing Methods For ChIP-Chip High Density Oligonucleotide Array Data," U.C. Berkeley Division of Biostatistics Working Paper Series 1147, Berkeley Electronic Press.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Volant, Stevenn & Martin Magniette, Marie-Laure & Robin, Stéphane, 2012. "Variational Bayes approach for model aggregation in unsupervised classification with Markovian dependency," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2375-2387.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    2. Colombi, R. & Giordano, S., 2015. "Multiple hidden Markov models for categorical time series," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 19-30.
    3. Love Michael I. & Myšičková Alena & Sun Ruping & Kalscheuer Vera & Vingron Martin & Haas Stefan A., 2011. "Modeling Read Counts for CNV Detection in Exome Sequencing Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-30, November.
    4. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    5. Huixia Judy Wang & Jianhua Hu, 2011. "Identification of Differential Aberrations in Multiple-Sample Array CGH Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 353-362, June.
    6. Vincent Guigues, 2012. "Nonparametric multivariate breakpoint detection for the means, variances, and covariances of a discrete time stochastic process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 857-882, December.
    7. Rameen Beroukhim & Ming Lin & Yuhyun Park & Ke Hao & Xiaojun Zhao & Levi A Garraway & Edward A Fox & Ephraim P Hochberg & Ingo K Mellinghoff & Matthias D Hofer & Aurelien Descazeaud & Mark A Rubin & M, 2006. "Inferring Loss-of-Heterozygosity from Unpaired Tumors Using High-Density Oligonucleotide SNP Arrays," PLOS Computational Biology, Public Library of Science, vol. 2(5), pages 1-10, May.
    8. A. Gandolfi & M. Benelli & A. Magi & S. Chiti, 2013. "Moment estimation in discrete shifting level model applied to fast array-CGH segmentation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 227-262, August.
    9. Yoo-Ah Kim & Stefan Wuchty & Teresa M Przytycka, 2011. "Identifying Causal Genes and Dysregulated Pathways in Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    10. Janczura, Joanna & Weron, Rafal, 2010. "Goodness-of-fit testing for regime-switching models," MPRA Paper 22871, University Library of Munich, Germany.
    11. Roland Langrock & Thomas Kneib & Alexander Sohn & Stacy L. DeRuiter, 2015. "Nonparametric inference in hidden Markov models using P-splines," Biometrics, The International Biometric Society, vol. 71(2), pages 520-528, June.
    12. Jennifer Pohle & Roland Langrock & Floris M. Beest & Niels Martin Schmidt, 2017. "Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 270-293, September.
    13. Henryk Gurgul & Robert Syrek & Christoph Mitterer, 2016. "Price duration versus trading volume in high-frequency data for selected DAX companies," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 17(2), pages 241-260.
    14. Francesco Bartolucci & Alessio Farcomeni, 2010. "A note on the mixture transition distribution and hidden Markov models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 132-138, March.
    15. Ali Al-Aradi & Sebastian Jaimungal, 2019. "Active and Passive Portfolio Management with Latent Factors," Papers 1903.06928, arXiv.org.
    16. Oscar M Rueda & Ramón Díaz-Uriarte, 2007. "Flexible and Accurate Detection of Genomic Copy-Number Changes from aCGH," PLOS Computational Biology, Public Library of Science, vol. 3(6), pages 1-8, June.
    17. Joanna Janczura & Rafal Weron, 2012. "Inference for Markov-regime switching models of electricity spot prices," HSC Research Reports HSC/12/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    18. Leighton Pritchard & Hui Liu & Clare Booth & Emma Douglas & Patrice François & Jacques Schrenzel & Peter E Hedley & Paul R J Birch & Ian K Toth, 2009. "Microarray Comparative Genomic Hybridisation Analysis Incorporating Genomic Organisation, and Application to Enterobacterial Plant Pathogens," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-17, August.
    19. Liu, Hefei & Song, Xinyuan, 2021. "Bayesian analysis of hidden Markov structural equation models with an unknown number of hidden states," Econometrics and Statistics, Elsevier, vol. 18(C), pages 29-43.
    20. Yu Chuan Tai & Mark N. Kvale & John S. Witte, 2010. "Segmentation and Estimation for SNP Microarrays: A Bayesian Multiple Change-Point Approach," Biometrics, The International Biometric Society, vol. 66(3), pages 675-683, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.