IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v14y2008i2p99-127n1.html
   My bibliography  Save this article

Application of kernel-based stochastic gradient algorithms to option pricing

Author

Listed:
  • Barty Kengy

    (EDF R&D, 1 avenue du Général de Gaulle, 92141 Clamart Cedex, France. Email: kengy.barty@edf.fr)

  • Girardeau Pierre

    (EDF R&D, also with the École Nationale des Ponts et Chaussées (ENPC) and the École Nationale Supérieure de Techniques Avancées (ENSTA), France. Email: pierre.girardeau@cermics.enpc.fr)

  • Strugarek Cyrille

    (EDF R&D when this research was done also, currently at Calyon, France. Email: cyrille.strugarek@calyon.com)

  • Roy Jean-Sébastien

Abstract

We present an algorithm for American option pricing based on stochastic approximation techniques. Besides working on a finite subset of the exercise dates (e.g. considering the associated Bermudean option), option pricing algorithms generally involve another step of discretization, either on the state space or on the underlying functional space. Our work, which is an application of a more general perturbed gradient algorithm introduced recently by the authors, consists in approximating the value functions of the classical dynamic programming equation at each time step by a linear combination of kernels. The so-called kernel-based stochastic gradient algorithm avoids any a priori discretization, besides the discretization of time. Thus, it converges toward the optimum of the non-discretized Bermudan option pricing problem.We present a comprehensive methodology to implement efficiently this algorithm, including discussions on the numerical tools used, like the Fast Gauss Transform, or Brownian bridge.We also compare our results to some existing methods, and provide empirical statistical results.

Suggested Citation

  • Barty Kengy & Girardeau Pierre & Strugarek Cyrille & Roy Jean-Sébastien, 2008. "Application of kernel-based stochastic gradient algorithms to option pricing," Monte Carlo Methods and Applications, De Gruyter, vol. 14(2), pages 99-127, January.
  • Handle: RePEc:bpj:mcmeap:v:14:y:2008:i:2:p:99-127:n:1
    DOI: 10.1515/MCMA.2008.006
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/MCMA.2008.006
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/MCMA.2008.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    3. Chen, Xiaohong & White, Halbert, 1998. "Nonparametric Adaptive Learning with Feedback," Journal of Economic Theory, Elsevier, vol. 82(1), pages 190-222, September.
    4. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    5. Vlad Bally & Gilles Pagès & Jacques Printems, 2005. "A Quantization Tree Method For Pricing And Hedging Multidimensional American Options," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 119-168, January.
    6. Bernard Lapeyre & Emmanuel Temam, 2001. "Competitive Monte Carlo methods for the pricing of Asian options," Post-Print hal-01667057, HAL.
    7. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux, 2001. "Applications of Malliavin calculus to Monte-Carlo methods in finance. II," Finance and Stochastics, Springer, vol. 5(2), pages 201-236.
    8. Kengy Barty & Jean-Sébastien Roy & Cyrille Strugarek, 2007. "Hilbert-Valued Perturbed Subgradient Algorithms," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 551-562, August.
    9. Barraquand, Jérôme & Martineau, Didier, 1995. "Numerical Valuation of High Dimensional Multivariate American Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(3), pages 383-405, September.
    10. Jèôme Barraquand, 1995. "Numerical Valuation of High Dimensional Multivariate European Securities," Management Science, INFORMS, vol. 41(12), pages 1882-1891, December.
    11. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    12. Mark Broadie & Yusaku Yamamoto, 2003. "Application of the Fast Gauss Transform to Option Pricing," Management Science, INFORMS, vol. 49(8), pages 1071-1088, August.
    13. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raquel M. Gaspar & Sara D. Lopes & Bernardo Sequeira, 2020. "Neural Network Pricing of American Put Options," Risks, MDPI, vol. 8(3), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
    2. Bally Vlad & Caramellino Lucia & Zanette Antonino, 2005. "Pricing and hedging American options by Monte Carlo methods using a Malliavin calculus approach," Monte Carlo Methods and Applications, De Gruyter, vol. 11(2), pages 97-133, June.
    3. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    4. R. Mark Reesor & T. James Marshall, 2020. "Forest of Stochastic Trees: A Method for Valuing Multiple Exercise Options," JRFM, MDPI, vol. 13(5), pages 1-31, May.
    5. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
    6. Lars Stentoft, 2004. "Convergence of the Least Squares Monte Carlo Approach to American Option Valuation," Management Science, INFORMS, vol. 50(9), pages 1193-1203, September.
    7. Lukito Adi Nugroho, 2017. "Real options valuation of franchise territorial exclusivity," Cogent Business & Management, Taylor & Francis Journals, vol. 4(1), pages 1262490-126, January.
    8. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Apr 2024.
    9. Chung-Gee Lin & Yu-Shan Wang, 2012. "Evaluating natural resource projects with embedded options and limited reserves," Applied Economics, Taylor & Francis Journals, vol. 44(12), pages 1471-1482, April.
    10. Dimitrakopoulos, Roussos G. & Abdel Sabour, Sabry A., 2007. "Evaluating mine plans under uncertainty: Can the real options make a difference?," Resources Policy, Elsevier, vol. 32(3), pages 116-125, September.
    11. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    12. Chen Liu & Henry Schellhorn & Qidi Peng, 2019. "American Option Pricing With Regression: Convergence Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-31, December.
    13. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    14. Jain, Shashi & Oosterlee, Cornelis W., 2015. "The Stochastic Grid Bundling Method: Efficient pricing of Bermudan options and their Greeks," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 412-431.
    15. Ehsan Hajizadeh & Masoud Mahootchi, 2019. "Developing a Risk-Based Approach for American Basket Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1593-1612, April.
    16. Sebastian Maier, 2021. "Re-evaluating natural resource investments under uncertainty: An alternative to limited traditional approaches," Annals of Operations Research, Springer, vol. 299(1), pages 907-937, April.
    17. Pringles, Rolando & Olsina, Fernando & Garcés, Francisco, 2015. "Real option valuation of power transmission investments by stochastic simulation," Energy Economics, Elsevier, vol. 47(C), pages 215-226.
    18. Peter W. Duck & Chao Yang & David P. Newton & Martin Widdicks, 2009. "Singular Perturbation Techniques Applied To Multiasset Option Pricing," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 457-486, July.
    19. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    20. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:14:y:2008:i:2:p:99-127:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.