IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v7y2011i3n2.html
   My bibliography  Save this article

Predicting the Atlanta Falcons Play-Calling Using Discriminant Analysis

Author

Listed:
  • Heiny Erik L

    (Utah Valley University)

  • Blevins David

    (Gaston Community College)

Abstract

This study investigated the ability of discriminant analysis to predict the offensive play calling of the 2005 Atlanta Falcons. Data was collected on each of the 988 offensive plays run from scrimmage by the Atlanta Falcons during the 2005 NFL season. Independent variables included game location (home vs. away), down, yards to go, field position, score, offensive formation, opponent's defensive rank against both the run and the pass, weather and field surface (turf vs. grass). The response variable was categorized into either a short pass (5 yards or less), medium pass (6 to 15 yards), long pass (more than 15 yards), run, or scramble (by Michael Vick).A linear discriminant function was developed to predict play calling based on the independent variables. Based on a cross validation procedure, the model was able to correctly predict the play called 40.38 percent of the time. While this rate is not high, the model was able to predict each play with greater accuracy than the relative frequency that each play was run. Considering that the Falcons coaches said they only use frequencies, the use of discriminant analysis is an intriguing possibility for NFL coaches.

Suggested Citation

  • Heiny Erik L & Blevins David, 2011. "Predicting the Atlanta Falcons Play-Calling Using Discriminant Analysis," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(3), pages 1-14, July.
  • Handle: RePEc:bpj:jqsprt:v:7:y:2011:i:3:n:2
    DOI: 10.2202/1559-0410.1230
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1559-0410.1230
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1559-0410.1230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alamar Benjamin C, 2010. "Measuring Risk in NFL Playcalling," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(2), pages 1-9, April.
    2. Alamar Benjamin C, 2006. "The Passing Premium Puzzle," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(4), pages 1-10, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emara, Noha & Owens, David & Smith, John & Wilmer, Lisa, 2017. "Serial correlation in National Football League play calling and its effects on outcomes," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 69(C), pages 125-132.
    2. Jared Quenzel & Paul Shea, 2016. "Predicting the Winner of Tied National Football League Games," Journal of Sports Economics, , vol. 17(7), pages 661-671, October.
    3. Urschel John D & Zhuang Jun, 2011. "Are NFL Coaches Risk and Loss Averse? Evidence from Their Use of Kickoff Strategies," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(3), pages 1-17, July.
    4. Emara, Noha & Owens, David & Smith, John & Wilmer, Lisa, 2014. "Minimax on the gridiron: Serial correlation and its effects on outcomes in the National Football League," MPRA Paper 58907, University Library of Munich, Germany.
    5. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    6. Goldner Keith, 2012. "A Markov Model of Football: Using Stochastic Processes to Model a Football Drive," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-18, March.
    7. McGough Erin & Clemons Curtis & Ferrara Michael & Norfolk Timothy & Young Gerald W, 2010. "A Game-Theoretic Approach to Personnel Decisions in American Football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(4), pages 1-15, October.
    8. Jordan Jeremy D & Melouk Sharif H & Perry Marcus B, 2009. "Optimizing Football Game Play Calling," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-34, May.
    9. Skinner Brian, 2010. "The Price of Anarchy in Basketball," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(1), pages 1-18, January.
    10. Alamar Benjamin C, 2010. "Measuring Risk in NFL Playcalling," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(2), pages 1-9, April.
    11. Morrison Harry L, 2010. "A Simplified Analysis of Contemporary Defensive Performance in the National Football League," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(4), pages 1-17, October.
    12. Snyder Kevin & Lopez Michael, 2015. "Consistency, accuracy, and fairness: a study of discretionary penalties in the NFL," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 11(4), pages 219-230, December.

    More about this item

    Keywords

    discriminant analysis; NFL football;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:7:y:2011:i:3:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.