IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v7y2011i3n11.html
   My bibliography  Save this article

On Estimating the Ability of NBA Players

Author

Listed:
  • Fearnhead Paul

    (Lancaster University)

  • Taylor Benjamin Matthew

    (Lancaster University)

Abstract

This paper introduces a new model and methodology for estimating the ability of NBA players. The main idea is to directly measure how good a player is by comparing how their team performs when they are on the court as opposed to when they are off it. This is achieved in such a way as to control for the changing abilities of the other players on court at different times during a match. The new method uses multiple seasons' data in a structured way to estimate player ability in an isolated season, measuring separately defensive and offensive merit as well as combining these to give an overall rating. The use of game statistics in predicting player ability will be considered. Results using data from the 2008/9 season suggest that LeBron James, who won the NBA MVP award, was the best overall player. The best defensive player was Lamar Odom and the best rookie was Russell Westbrook, neither of whom won an NBA award that season. The results further indicate that whilst the frequently-reported game statistics provide some information on offensive ability, they do not perform well in the prediction of defensive ability.

Suggested Citation

  • Fearnhead Paul & Taylor Benjamin Matthew, 2011. "On Estimating the Ability of NBA Players," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(3), pages 1-18, July.
  • Handle: RePEc:bpj:jqsprt:v:7:y:2011:i:3:n:11
    DOI: 10.2202/1559-0410.1298
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1559-0410.1298
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1559-0410.1298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kubatko Justin & Oliver Dean & Pelton Kevin & Rosenbaum Dan T, 2007. "A Starting Point for Analyzing Basketball Statistics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 3(3), pages 1-24, July.
    2. Entine Oliver A & Small Dylan S, 2008. "The Role of Rest in the NBA Home-Court Advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(2), pages 1-11, April.
    3. David J. Berri, 1999. "Who is 'most valuable'? Measuring the player's production of wins in the National Basketball Association," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 411-427.
    4. Zak, Thomas A & Huang, Cliff J & Siegfried, John J, 1979. "Production Efficiency: The Case of Professional Basketball," The Journal of Business, University of Chicago Press, vol. 52(3), pages 379-392, July.
    5. Harville D.A., 2003. "The Selection or Seeding of College Basketball or Football Teams for Postseason Competition," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 17-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephen A. Bergman & Trevon D. Logan, 2020. "Revenue per Quality of College Football Recruit," Journal of Sports Economics, , vol. 21(6), pages 571-592, August.
    2. Rodolfo Metulini & Giorgio Gnecco, 2023. "Measuring players’ importance in basketball using the generalized Shapley value," Annals of Operations Research, Springer, vol. 325(1), pages 441-465, June.
    3. Lim, Alejandro & Chiang, Chin-Tsang & Teng, Jen-Chieh, 2021. "Estimating robot strengths with application to selection of alliance members in FIRST robotics competitions," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    4. Macdonald Brian, 2012. "Adjusted Plus-Minus for NHL Players using Ridge Regression with Goals, Shots, Fenwick, and Corsi," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-24, October.
    5. Page Garritt L. & Barney Bradley J. & McGuire Aaron T., 2013. "Effect of position, usage rate, and per game minutes played on NBA player production curves," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(4), pages 337-345, December.
    6. Marco Sandri & Paola Zuccolotto & Marica Manisera, 2020. "Markov switching modelling of shooting performance variability and teammate interactions in basketball," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1337-1356, November.
    7. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2023. "Spatial performance analysis in basketball with CART, random forest and extremely randomized trees," Annals of Operations Research, Springer, vol. 325(1), pages 495-519, June.
    8. Kharrat, Tarak & McHale, Ian G. & Peña, Javier López, 2020. "Plus–minus player ratings for soccer," European Journal of Operational Research, Elsevier, vol. 283(2), pages 726-736.
    9. Pierpalo D’Urso & Livia Giovanni & Vincenzina Vitale, 2023. "A Bayesian network to analyse basketball players’ performances: a multivariate copula-based approach," Annals of Operations Research, Springer, vol. 325(1), pages 419-440, June.
    10. Shankar Ghimire & Justin A Ehrlich & Shane D Sanders, 2020. "Measuring individual worker output in a complementary team setting: Does regularized adjusted plus minus isolate individual NBA player contributions?," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-11, August.
    11. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2021. "Spatial Performance Indicators and Graphs in Basketball," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 725-738, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manner Hans, 2016. "Modeling and forecasting the outcomes of NBA basketball games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 31-41, March.
    2. Štrumbelj, Erik & Vračar, Petar, 2012. "Simulating a basketball match with a homogeneous Markov model and forecasting the outcome," International Journal of Forecasting, Elsevier, vol. 28(2), pages 532-542.
    3. Yiannis Nikolaidis, 2015. "Building a basketball game strategy through statistical analysis of data," Annals of Operations Research, Springer, vol. 227(1), pages 137-159, April.
    4. Jim Lackritz & Ira Horowitz, 2021. "The Value of Statistics Contributing to Scoring in the NBA: A Quantitative Approach," The American Economist, Sage Publications, vol. 66(2), pages 175-189, October.
    5. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    6. José M. Sánchez Santos & Pablo Castellanos García & Jesus A. Dopico Castro, 2006. "The production process in basketball: Empirical evidence from Spanish league," Working Papers 0611, International Association of Sports Economists;North American Association of Sports Economists.
    7. KimMarie McGoldrick & Lisa Voeks, 2005. "“We Got Game!â€," Journal of Sports Economics, , vol. 6(1), pages 5-23, February.
    8. John Robst & Jennifer VanGilder & Corinne E. Coates & David J. Berri, 2011. "Skin Tone and Wages: Evidence From NBA Free Agents," Journal of Sports Economics, , vol. 12(2), pages 143-156, April.
    9. Andrew W. Nutting, 2010. "Travel Costs in the NBA Production Function," Journal of Sports Economics, , vol. 11(5), pages 533-548, October.
    10. Young Hoon Lee & David Berri, 2008. "A Re‐Examination Of Production Functions And Efficiency Estimates For The National Basketball Association," Scottish Journal of Political Economy, Scottish Economic Society, vol. 55(1), pages 51-66, February.
    11. Boon L. Lee & Andrew C. Worthington, 2013. "A note on the ‘Linsanity’ of measuring the relative efficiency of National Basketball Association guards," Applied Economics, Taylor & Francis Journals, vol. 45(29), pages 4193-4202, October.
    12. Robert A. Baade & Victor A. Matheson, 2008. "Research Note: Assessing Household Service Losses with Joint Survival Probabilities," Journal of Forensic Economics, National Association of Forensic Economics, vol. 20(2), pages 187-192, October.
    13. Schmidt, Martin B., 2021. "Risk and uncertainty in team building: Evidence from a professional basketball market," Journal of Economic Behavior & Organization, Elsevier, vol. 186(C), pages 735-753.
    14. Erin Lane & Juan Nagel & Janet S. Netz, 2014. "Alternative Approaches to Measuring MRP," Journal of Sports Economics, , vol. 15(3), pages 237-262, June.
    15. Stekler Herman O. & Klein Andrew, 2012. "Predicting the Outcomes of NCAA Basketball Championship Games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-10, March.
    16. Joseph Price & Justin Wolfers, 2010. "Racial Discrimination Among NBA Referees," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(4), pages 1859-1887.
    17. Benjamin Leard & Joanne M. Doyle, 2011. "The Effect of Home Advantage, Momentum, and Fighting on Winning in the National Hockey League," Journal of Sports Economics, , vol. 12(5), pages 538-560, October.
    18. Vaughan Williams, Leighton & Stekler, Herman O., 2010. "Sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 445-447, July.
      • Herman O. Stekler, 2007. "Sports Forecasting," Working Papers 2007-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting, revised Jan 2007.
    19. Heejoon Kang & Michele Fratianni, 2006. "International Trade Efficiency, the Gravity Equation, and the Stochastic Frontier," Working Papers 2006-08, Indiana University, Kelley School of Business, Department of Business Economics and Public Policy.
    20. Marques António Cardoso, 2009. "Estimating Quality in Home Advantage and Competitive Balance in the Portuguese Football League," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(3), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:7:y:2011:i:3:n:11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.