IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v8y2012i3n8.html
   My bibliography  Save this article

Adjusted Plus-Minus for NHL Players using Ridge Regression with Goals, Shots, Fenwick, and Corsi

Author

Listed:
  • Macdonald Brian

    (United States Military Academy)

Abstract

Regression-based adjusted plus-minus statistics were developed in basketball and have recently come to hockey. The purpose of these statistics is to provide an estimate of each player's contribution to his team, independent of the strength of his teammates, the strength of his opponents, and other variables that are out of his control. One of the main downsides of the ordinary least squares regression models is that the estimates have large error bounds. Since certain pairs of teammates play together frequently, collinearity is present in the data and is one reason for the large errors. In hockey, the relative lack of scoring compared to basketball is another reason. To deal with these issues, we use ridge regression, a method that is commonly used in lieu of ordinary least squares regression when collinearity is present in the data. We also create models that use not only goals, but also shots, Fenwick rating (shots plus missed shots), and Corsi rating (shots, missed shots, and blocked shots). One benefit of using these statistics is that there are roughly ten times as many shots as goals, so there is much more data when using these statistics and the resulting estimates have smaller error bounds. The results of our ridge regression models are estimates of the offensive and defensive contributions of forwards and defensemen during even strength, power play, and short handed situations, in terms of goals per 60 minutes. The estimates are independent of strength of teammates, strength of opponents, and the zone in which a player's shift begins.

Suggested Citation

  • Macdonald Brian, 2012. "Adjusted Plus-Minus for NHL Players using Ridge Regression with Goals, Shots, Fenwick, and Corsi," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-24, October.
  • Handle: RePEc:bpj:jqsprt:v:8:y:2012:i:3:n:8
    DOI: 10.1515/1559-0410.1447
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/1559-0410.1447
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/1559-0410.1447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Macdonald Brian, 2011. "A Regression-Based Adjusted Plus-Minus Statistic for NHL Players," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(3), pages 1-31, July.
    2. Fearnhead Paul & Taylor Benjamin Matthew, 2011. "On Estimating the Ability of NBA Players," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(3), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Ge & Michael J. Lopez, 2016. "Lockouts and Player Productivity," Journal of Sports Economics, , vol. 17(5), pages 427-452, June.
    2. Ehrlich Justin & Sanders Shane & Boudreaux Christopher J., 2019. "The relative wages of offense and defense in the NBA: a setting for win-maximization arbitrage?," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 213-224, September.
    3. McHale, Ian G. & Holmes, Benjamin, 2023. "Estimating transfer fees of professional footballers using advanced performance metrics and machine learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 389-399.
    4. Babatunde Buraimo & David Forrest & Ian G. McHale & J.D. Tena, 2020. "Armchair Fans: New Insights Into The Demand For Televised Soccer," Working Papers 202020, University of Liverpool, Department of Economics.
    5. Buraimo, Babatunde & Forrest, David & McHale, Ian G. & Tena, J.D., 2022. "Armchair fans: Modelling audience size for televised football matches," European Journal of Operational Research, Elsevier, vol. 298(2), pages 644-655.
    6. Kharrat, Tarak & McHale, Ian G. & Peña, Javier López, 2020. "Plus–minus player ratings for soccer," European Journal of Operational Research, Elsevier, vol. 283(2), pages 726-736.
    7. Shankar Ghimire & Justin A Ehrlich & Shane D Sanders, 2020. "Measuring individual worker output in a complementary team setting: Does regularized adjusted plus minus isolate individual NBA player contributions?," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-11, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shankar Ghimire & Justin A Ehrlich & Shane D Sanders, 2020. "Measuring individual worker output in a complementary team setting: Does regularized adjusted plus minus isolate individual NBA player contributions?," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-11, August.
    2. Lim, Alejandro & Chiang, Chin-Tsang & Teng, Jen-Chieh, 2021. "Estimating robot strengths with application to selection of alliance members in FIRST robotics competitions," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    3. Brander James A. & Egan Edward J. & Yeung Louisa, 2014. "Estimating the effects of age on NHL player performance," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 241-259, June.
    4. Pierpalo D’Urso & Livia Giovanni & Vincenzina Vitale, 2023. "A Bayesian network to analyse basketball players’ performances: a multivariate copula-based approach," Annals of Operations Research, Springer, vol. 325(1), pages 419-440, June.
    5. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    6. Kharrat, Tarak & McHale, Ian G. & Peña, Javier López, 2020. "Plus–minus player ratings for soccer," European Journal of Operational Research, Elsevier, vol. 283(2), pages 726-736.
    7. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2021. "Spatial Performance Indicators and Graphs in Basketball," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 725-738, August.
    8. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2023. "Spatial performance analysis in basketball with CART, random forest and extremely randomized trees," Annals of Operations Research, Springer, vol. 325(1), pages 495-519, June.
    9. Ehrlich Justin & Sanders Shane & Boudreaux Christopher J., 2019. "The relative wages of offense and defense in the NBA: a setting for win-maximization arbitrage?," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 213-224, September.
    10. Sabin R. Paul, 2021. "Estimating player value in American football using plus–minus models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(4), pages 313-364, December.
    11. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    12. Page Garritt L. & Barney Bradley J. & McGuire Aaron T., 2013. "Effect of position, usage rate, and per game minutes played on NBA player production curves," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(4), pages 337-345, December.
    13. Marco Sandri & Paola Zuccolotto & Marica Manisera, 2020. "Markov switching modelling of shooting performance variability and teammate interactions in basketball," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1337-1356, November.
    14. Rodolfo Metulini & Giorgio Gnecco, 2023. "Measuring players’ importance in basketball using the generalized Shapley value," Annals of Operations Research, Springer, vol. 325(1), pages 441-465, June.
    15. Stephen A. Bergman & Trevon D. Logan, 2020. "Revenue per Quality of College Football Recruit," Journal of Sports Economics, , vol. 21(6), pages 571-592, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:8:y:2012:i:3:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.