IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v6y2010i1n8.html
   My bibliography  Save this article

Consistency and Pythagoras

Author

Listed:
  • Braunstein Alexander

    (University of Pennsylvania)

Abstract

Pythagorean win share has been one of the fundamental contributions to Sabermetrics. Several hundred articles, both academic and non-academic, have explored variations on Bill James' original formula and its fit to empirical data. This paper considers a variation that is previously unexplored on any systematic level, consistency. After discussing several important contributions to the line of literature, we demonstrate the strong correlation between Pythagorean residuals and several notions of run distribution consistency. Finally, we select the "correct" form of consistency and use it to construct a simple regression estimator, which improves RMSE by 11%.

Suggested Citation

  • Braunstein Alexander, 2010. "Consistency and Pythagoras," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(1), pages 1-16, January.
  • Handle: RePEc:bpj:jqsprt:v:6:y:2010:i:1:n:8
    DOI: 10.2202/1559-0410.1215
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1559-0410.1215
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1559-0410.1215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kubatko Justin & Oliver Dean & Pelton Kevin & Rosenbaum Dan T, 2007. "A Starting Point for Analyzing Basketball Statistics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 3(3), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kovalchik Stephanie Ann, 2016. "Is there a Pythagorean theorem for winning in tennis?," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 43-49, March.
    2. Kaplan Edward H. & Rich Candler, 2017. "Decomposing Pythagoras," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 13(4), pages 141-149, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph Price & Justin Wolfers, 2010. "Racial Discrimination Among NBA Referees," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(4), pages 1859-1887.
    2. Gabel Alan & Redner Sidney, 2012. "Random Walk Picture of Basketball Scoring," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-20, March.
    3. Leonardo Lamas & José Vitor Senatore & Gilbert Fellingham, 2020. "Two steps for scoring a point: Creating and converting opportunities in invasion team sports," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-16, October.
    4. Pierpalo D’Urso & Livia Giovanni & Vincenzina Vitale, 2023. "A Bayesian network to analyse basketball players’ performances: a multivariate copula-based approach," Annals of Operations Research, Springer, vol. 325(1), pages 419-440, June.
    5. Letian Zhang, 2019. "Who Loses When a Team Wins? Better Performance Increases Racial Bias," Organization Science, INFORMS, vol. 30(1), pages 40-50, February.
    6. Turner, Chad & Hakes, Jahn Karl, 2007. "The Collective Bargaining Effects of NBA Player Productivity Dynamics," MPRA Paper 5058, University Library of Munich, Germany.
    7. Leonardo Lamas & Felipe Santana & Matthew Heiner & Carlos Ugrinowitsch & Gilbert Fellingham, 2015. "Modeling the Offensive-Defensive Interaction and Resulting Outcomes in Basketball," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-14, December.
    8. Alessandro Chessa & Pierpaolo D’Urso & Livia Giovanni & Vincenzina Vitale & Alfonso Gebbia, 2023. "Complex networks for community detection of basketball players," Annals of Operations Research, Springer, vol. 325(1), pages 363-389, June.
    9. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    10. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2021. "Spatial Performance Indicators and Graphs in Basketball," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 725-738, August.
    11. Matteo Pazzona, 2022. "Peer interactions and performance in a high‐skilled labour market," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(4), pages 1087-1116, October.
    12. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2023. "Spatial performance analysis in basketball with CART, random forest and extremely randomized trees," Annals of Operations Research, Springer, vol. 325(1), pages 495-519, June.
    13. Fabio Fonti & Massimo Maoret, 2016. "The direct and indirect effects of core and peripheral social capital on organizational performance," Strategic Management Journal, Wiley Blackwell, vol. 37(8), pages 1765-1786, August.
    14. Brian Skinner, 2012. "The Problem of Shot Selection in Basketball," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-8, January.
    15. Manner Hans, 2016. "Modeling and forecasting the outcomes of NBA basketball games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 31-41, March.
    16. Sabin R. Paul, 2021. "Estimating player value in American football using plus–minus models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(4), pages 313-364, December.
    17. Štrumbelj, Erik & Vračar, Petar, 2012. "Simulating a basketball match with a homogeneous Markov model and forecasting the outcome," International Journal of Forecasting, Elsevier, vol. 28(2), pages 532-542.
    18. Miguel Ángel Pérez-Toledano & Francisco J Rodriguez & Javier García-Rubio & Sergio José Ibañez, 2019. "Players’ selection for basketball teams, through Performance Index Rating, using multiobjective evolutionary algorithms," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-20, September.
    19. Nikolaos Stavropoulos & Alexandra Papadopoulou & Pavlos Kolias, 2021. "Evaluating the Efficiency of Off-Ball Screens in Elite Basketball Teams via Second-Order Markov Modelling," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
    20. Jun Woo Kim & Mar Magnusen & Seunghoon Jeong, 2023. "March Madness prediction: Different machine learning approaches with non‐box score statistics," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2223-2236, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:6:y:2010:i:1:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.