IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v13y2017i4p141-149n2.html
   My bibliography  Save this article

Decomposing Pythagoras

Author

Listed:
  • Kaplan Edward H.

    (William N. and Marie A. Beach Professor of Operations Research, Yale School of Management, New Haven, CT, USA)

  • Rich Candler

    (Applied Mathematics Program, Yale University, New Haven, CT, USA)

Abstract

The Pythagorean win expectancy model developed by Bill James remains one of the most celebrated results in sports analytics. Many have extended the application of this model from its original use in baseball to other sports. Others have shown technical scoring conditions that imply the equivalence of win probability and the Pythagorean model. However, no explanation has been offered for why different sports yield different results beyond “that’s what the data say.” This article presents a theoretical analysis of the Pythagorean model by first deducing an exact within-team equation relating win percentage to seasonal scoring records, and then reconciling mathematically this result with the Pythagorean model which is cross-sectional across teams in a league. We derive a complete decomposition of the Pythagorean coefficient γ in terms of the exact model, and show that γ captures two key quantities – average points per game, and the average margins of victory and defeat – that together explain why different sports yield different results. We demonstrate this decomposition using the past decade of seasonal results from MLB baseball, NBA basketball, NFL football, and NHL hockey, and show that the data do reflect the properties deduced in our analysis.

Suggested Citation

  • Kaplan Edward H. & Rich Candler, 2017. "Decomposing Pythagoras," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 13(4), pages 141-149, December.
  • Handle: RePEc:bpj:jqsprt:v:13:y:2017:i:4:p:141-149:n:2
    DOI: 10.1515/jqas-2017-0055
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2017-0055
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2017-0055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosenfeld Jason W. & Fisher Jake I & Adler Daniel & Morris Carl, 2010. "Predicting Overtime with the Pythagorean Formula," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(2), pages 1-19, April.
    2. Braunstein Alexander, 2010. "Consistency and Pythagoras," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pettigrew Stephen, 2014. "How the West will be won: using Monte Carlo simulations to estimate the effects of NHL realignment," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(3), pages 345-355, September.
    2. Kovalchik Stephanie Ann, 2016. "Is there a Pythagorean theorem for winning in tennis?," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 43-49, March.
    3. Manner Hans, 2016. "Modeling and forecasting the outcomes of NBA basketball games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 31-41, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:13:y:2017:i:4:p:141-149:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.