IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v10y2014i4p13n4.html
   My bibliography  Save this article

Stochastic model of the 2012 PGA Tour season

Author

Listed:
  • Heiny Erik L.

    (Utah Valley University, Department of Mathematics, 800 W University Parkway, Orem, UT 84058, USA)

  • Heiny Robert Lowell

    (University of Northern Colorado, School of Mathematical Sciences, 501 20th St., Greeley, CO 80639, USA)

Abstract

An absorbing Markov chain was used to model the 2012 PGA Tour Golf Season. Expected number of steps until absorption was used to establish expected scores for different locations (fairway, primary rough, green, etc.) and distances from the hole. Strokes gained analysis was then performed to evaluate the quality of each shot hit by players on the 2012 PGA Tour. Skill rankings were developed, tradeoffs between distance and accuracy were assessed, and player strategy was analyzed for playing par 5s.

Suggested Citation

  • Heiny Erik L. & Heiny Robert Lowell, 2014. "Stochastic model of the 2012 PGA Tour season," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(4), pages 367-379, December.
  • Handle: RePEc:bpj:jqsprt:v:10:y:2014:i:4:p:13:n:4
    DOI: 10.1515/jqas-2014-0043
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2014-0043
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2014-0043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goldner Keith, 2012. "A Markov Model of Football: Using Stochastic Processes to Model a Football Drive," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-18, March.
    2. Newton Paul K & Aslam Kamran, 2009. "Monte Carlo Tennis: A Stochastic Markov Chain Model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(3), pages 1-44, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pasteur R. Drew & Janning Michael C., 2011. "Monte Carlo Simulation for High School Football Playoff Seed Projection," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(2), pages 1-10, May.
    2. Bizzozero, Paolo & Flepp, Raphael & Franck, Egon, 2016. "The importance of suspense and surprise in entertainment demand: Evidence from Wimbledon," Journal of Economic Behavior & Organization, Elsevier, vol. 130(C), pages 47-63.
    3. Pettigrew Stephen, 2014. "How the West will be won: using Monte Carlo simulations to estimate the effects of NHL realignment," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(3), pages 345-355, September.
    4. Noubary Reza D. & Coles Drue, 2011. "Rule of Tangent for Win-By-Two Games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(4), pages 1-18, October.
    5. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    6. Jarvandi Ali & Sarkani Shahram & Mazzuchi Thomas, 2013. "Modeling team compatibility factors using a semi-Markov decision process: a data-driven approach to player selection in soccer," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(4), pages 347-366, December.
    7. Goldner Keith, 2012. "A Markov Model of Football: Using Stochastic Processes to Model a Football Drive," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-18, March.
    8. Gonzalez-Cabrera Ivan & Herrera Diego Dario & González Diego Luis, 2020. "Generalized model for scores in volleyball matches," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(1), pages 41-55, March.
    9. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    10. Timothy C. Y. Chan & Craig Fernandes & Martin L. Puterman, 2021. "Points Gained in Football: Using Markov Process-Based Value Functions to Assess Team Performance," Operations Research, INFORMS, vol. 69(3), pages 877-894, May.
    11. Sung, Ming-Chien & McDonald, David C.J. & Johnson, Johnnie E.V. & Tai, Chung-Ching & Cheah, Eng-Tuck, 2019. "Improving prediction market forecasts by detecting and correcting possible over-reaction to price movements," European Journal of Operational Research, Elsevier, vol. 272(1), pages 389-405.
    12. Zhou, Yunjing & Zong, Shouxin & Cao, Run & Gómez, Miguel-Ángel & Chen, Chuqi & Cui, Yixiong, 2023. "Using network science to analyze tennis stroke patterns," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Galeano, Javier & Gómez, Miguel-Ángel & Rivas, Fernando & Buldú, Javier M., 2022. "Using Markov chains to identify player’s performance in badminton," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    14. Marc Garnica-Caparrós & Daniel Memmert & Fabian Wunderlich, 2022. "Artificial data in sports forecasting: a simulation framework for analysing predictive models in sports," Information Systems and e-Business Management, Springer, vol. 20(3), pages 551-580, September.
    15. Fabian Wunderlich & Daniel Memmert, 2018. "The Betting Odds Rating System: Using soccer forecasts to forecast soccer," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-18, June.
    16. Chan Timothy C.Y. & Singal Raghav, 2018. "A Bayesian regression approach to handicapping tennis players based on a rating system," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(3), pages 131-141, September.
    17. Heiner Matthew & Fellingham Gilbert W. & Thomas Camille, 2014. "Skill importance in women’s soccer," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 287-302, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:10:y:2014:i:4:p:13:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.