IDEAS home Printed from https://ideas.repec.org/a/bpj/jecome/v9y2020i1p23n5.html
   My bibliography  Save this article

Level-Based Estimation of Dynamic Panel Models

Author

Listed:
  • Montes-Rojas Gabriel

    (Instituto Interdisciplinario de Economía Política, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina)

  • Sosa-Escudero Walter

    (Universidad de San Andrés-CONICET, Buenos Aires, Argentina)

  • Zincenko Federico

    (Department of Economics, University of Pittsburgh, Pittsburgh, PA, USA)

Abstract

This paper develops an alternative estimator for linear dynamic panel data models based on parameterizing the covariances between covariates and unobserved time-invariant effects. A GMM framework is used to derive an optimal estimator based on moment conditions in levels, with no efficiency loss compared to the classic alternatives like (Arellano, M., and S. Bond. 1991. “Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations.” Review of Economic Studies 58 (2): 277–297), (Ahn, S. C., and P. Schmidt. 1995. “Efficient Estimation of Models for Dynamic Panel Data.” Journal of Econometrics 68 (1): 5–27) and (Ahn, S. C., and P. Schmidt. 1997. “Efficient Estimation of Dynamic Panel Data Models: Alternative Assumptions and Simplified Estimation.” Journal of Econometrics 76: 309–321). Still, we show analytically and by Monte Carlo simulations that the new procedure leads to efficiency improvements for certain data generating processes. The framework also leads to a very simple test for unobserved effects.

Suggested Citation

  • Montes-Rojas Gabriel & Sosa-Escudero Walter & Zincenko Federico, 2020. "Level-Based Estimation of Dynamic Panel Models," Journal of Econometric Methods, De Gruyter, vol. 9(1), pages 1-23, January.
  • Handle: RePEc:bpj:jecome:v:9:y:2020:i:1:p:23:n:5
    DOI: 10.1515/jem-2018-0015
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jem-2018-0015
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jem-2018-0015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yamagata, Takashi, 2008. "A joint serial correlation test for linear panel data models," Journal of Econometrics, Elsevier, vol. 146(1), pages 135-145, September.
    2. Theil, Henri, 1983. "Linear algebra and matrix methods in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 1, pages 3-65, Elsevier.
    3. Sasaki, Yuya & Xin, Yi, 2017. "Unequal spacing in dynamic panel data: Identification and estimation," Journal of Econometrics, Elsevier, vol. 196(2), pages 320-330.
    4. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    5. Federico Zincenko & Walter Sosa-Escudero & Gabriel Montes-Rojas, 2014. "Robust tests for time-invariant individual heterogeneity versus dynamic state dependence," Empirical Economics, Springer, vol. 47(4), pages 1365-1387, December.
    6. Patrick Sevestre & Laszlo Matyas, 2008. "The Econometrics of Panel Data," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00279977, HAL.
    7. Maurice J. G. Bun & Frank Windmeijer, 2010. "The weak instrument problem of the system GMM estimator in dynamic panel data models," Econometrics Journal, Royal Economic Society, vol. 13(1), pages 95-126, February.
    8. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    9. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    10. Ahn, Seung C. & Schmidt, Peter, 1997. "Efficient estimation of dynamic panel data models: Alternative assumptions and simplified estimation," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 309-321.
    11. Walter Sosa-Escudero & Mariana Marchionni & Omar Arias, 2011. "Sources of Income Persistence: Evidence from Rural El Salvador," Journal of Income Distribution, Ad libros publications inc., vol. 20(1), pages 3-28, March.
    12. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    13. Jianhong Wu & Lixing Zhu, 2012. "Estimation of and testing for random effects in dynamic panel data models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 477-497, September.
    14. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    15. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    16. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    17. Judson, Ruth A. & Owen, Ann L., 1999. "Estimating dynamic panel data models: a guide for macroeconomists," Economics Letters, Elsevier, vol. 65(1), pages 9-15, October.
    18. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1.
    19. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    20. Jerry Hausman & Maxim L. Pinkovskiy, 2017. "Estimating dynamic panel models: backing out the Nickell Bias," CeMMAP working papers CWP53/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    21. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    2. Biørn, Erik, 2012. "The Measurement Error Problem in Dynamic Panel Data Analysis: Modeling and GMM Estimation," Memorandum 02/2012, Oslo University, Department of Economics.
    3. Hayakawa, Kazuhiko, 2019. "Alternative over-identifying restriction test in the GMM estimation of panel data models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 71-95.
    4. Sebastian Kripfganz & Claudia Schwarz, 2019. "Estimation of linear dynamic panel data models with time‐invariant regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(4), pages 526-546, June.
    5. Kruiniger, Hugo, 2013. "Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions," Journal of Econometrics, Elsevier, vol. 173(2), pages 175-188.
    6. Biørn, Erik & Han, Xuehui, 2012. "Panel Data Dynamics and Measurement Errors: GMM Bias, IV Validity and Model Fit – A Monte Carlo Study," Memorandum 27/2012, Oslo University, Department of Economics.
    7. Erik Biørn, 2015. "Panel data dynamics with mis-measured variables: modeling and GMM estimation," Empirical Economics, Springer, vol. 48(2), pages 517-535, March.
    8. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    9. Jan F. Kiviet, 2005. "Judging Contending Estimators by Simulation: Tournaments in Dynamic Panel Data Models," Tinbergen Institute Discussion Papers 05-112/4, Tinbergen Institute.
    10. Badi H. Baltagi, 2021. "Dynamic Panel Data Models," Springer Texts in Business and Economics, in: Econometric Analysis of Panel Data, edition 6, chapter 0, pages 187-228, Springer.
    11. Barbara ERMINI & Raffaella SANTOLINI, 2013. "Does globalization matter on fiscal decentralization of OECD?," Working Papers 390, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    12. Hayakawa, Kazuhiko & Nagata, Shuichi, 2016. "On the behaviour of the GMM estimator in persistent dynamic panel data models with unrestricted initial conditions," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 265-303.
    13. De Blander, Rembert, 2020. "Iterative estimation correcting for error auto-correlation in short panels, applied to lagged dependent variable models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 3-29.
    14. Dang, Viet Anh & Kim, Minjoo & Shin, Yongcheol, 2015. "In search of robust methods for dynamic panel data models in empirical corporate finance," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 84-98.
    15. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
    16. Arturas Juodis, 2013. "Cointegration Testing in Panel VAR Models Under Partial Identification and Spatial Dependence," UvA-Econometrics Working Papers 13-08, Universiteit van Amsterdam, Dept. of Econometrics.
    17. Vieira, Flávio & MacDonald, Ronald & Damasceno, Aderbal, 2012. "The role of institutions in cross-section income and panel data growth models: A deeper investigation on the weakness and proliferation of instruments," Journal of Comparative Economics, Elsevier, vol. 40(1), pages 127-140.
    18. Alexander Klemm & Stefan Parys, 2012. "Empirical evidence on the effects of tax incentives," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(3), pages 393-423, June.
    19. Bun, Maurice J.G. & Kiviet, Jan F., 2006. "The effects of dynamic feedbacks on LS and MM estimator accuracy in panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 409-444, June.
    20. Jacques Mairesse & Bronwyn H. Hall & Benoît Mulkay, 1999. "Firm-Level Investment in France and the United States: An Exploration of What We Have Learned in Twenty Years," Annals of Economics and Statistics, GENES, issue 55-56, pages 27-67.

    More about this item

    Keywords

    asymptotic efficiency; dynamic panel; GMM estimation; individual effects; short panel;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jecome:v:9:y:2020:i:1:p:23:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.