IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v9y2013i1p18n5.html
   My bibliography  Save this article

Boosting Structured Additive Quantile Regression for Longitudinal Childhood Obesity Data

Author

Listed:
  • Fenske Nora

    (Institut für Statistik, Ludwigs-Maximilians-Universität München, Ludwigstr. 33, München 80539, Germany)

  • Fahrmeir Ludwig

    (Institut für Statistik, Ludwigs-Maximilians-Universität München, Germany)

  • Hothorn Torsten

    (Abteilung Biostatistik, Universität Zürich, Switzerland)

  • Rzehak Peter

    (Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-Universität München, Germany)

  • Höhle Michael

    (Department of Mathematics, Stockholm University, Sweden)

Abstract

Childhood obesity and the investigation of its risk factors has become an important public health issue. Our work is based on and motivated by a German longitudinal study including 2,226 children with up to ten measurements on their body mass index (BMI) and risk factors from birth to the age of 10 years. We introduce boosting of structured additive quantile regression as a novel distribution-free approach for longitudinal quantile regression. The quantile-specific predictors of our model include conventional linear population effects, smooth nonlinear functional effects, varying-coefficient terms, and individual-specific effects, such as intercepts and slopes. Estimation is based on boosting, a computer intensive inference method for highly complex models. We propose a component-wise functional gradient descent boosting algorithm that allows for penalized estimation of the large variety of different effects, particularly leading to individual-specific effects shrunken toward zero. This concept allows us to flexibly estimate the nonlinear age curves of upper quantiles of the BMI distribution, both on population and on individual-specific level, adjusted for further risk factors and to detect age-varying effects of categorical risk factors. Our model approach can be regarded as the quantile regression analog of Gaussian additive mixed models (or structured additive mean regression models), and we compare both model classes with respect to our obesity data.

Suggested Citation

  • Fenske Nora & Fahrmeir Ludwig & Hothorn Torsten & Rzehak Peter & Höhle Michael, 2013. "Boosting Structured Additive Quantile Regression for Longitudinal Childhood Obesity Data," The International Journal of Biostatistics, De Gruyter, vol. 9(1), pages 1-18, July.
  • Handle: RePEc:bpj:ijbist:v:9:y:2013:i:1:p:18:n:5
    DOI: 10.1515/ijb-2012-0035
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2012-0035
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2012-0035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fenske, Nora & Kneib, Thomas & Hothorn, Torsten, 2011. "Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 494-510.
    2. Franco Sassi & Marion Devaux & Michele Cecchini & Elena Rusticelli, 2009. "The Obesity Epidemic: Analysis of Past and Projected Future Trends in Selected OECD Countries," OECD Health Working Papers 45, OECD Publishing.
    3. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    4. Breitfelder, Ariane & Wenig, Christina M. & Wolfenstetter, Silke B. & Rzehak, Peter & Menn, Petra & John, Jürgen & Leidl, Reiner & Bauer, Carl Peter & Koletzko, Sibylle & Röder, Stefan & Herbarth, Olf, 2011. "Relative weight-related costs of healthcare use by children--Results from the two German birth cohorts, GINI-plus and LISA-plus," Economics & Human Biology, Elsevier, vol. 9(3), pages 302-315, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Ouhourane & Yi Yang & Andréa L. Benedet & Karim Oualkacha, 2022. "Group penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 495-529, September.
    2. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A quantile-boosting approach to forecasting gold returns," The North American Journal of Economics and Finance, Elsevier, vol. 35(C), pages 38-55.
    3. Tepegjozova Marija & Zhou Jing & Claeskens Gerda & Czado Claudia, 2022. "Nonparametric C- and D-vine-based quantile regression," Dependence Modeling, De Gruyter, vol. 10(1), pages 1-21, January.
    4. Lu, Yao & Zhan, Shuwei & Zhan, Minghua, 2024. "Has FinTech changed the sensitivity of corporate investment to interest rates?—Evidence from China," Research in International Business and Finance, Elsevier, vol. 68(C).
    5. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    6. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    7. Iván Fernández-Val & Martin Weidner, 2018. "Fixed Effects Estimation of Large-TPanel Data Models," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 109-138, August.
    8. Benjamin Hofner & Andreas Mayr & Nikolay Robinzonov & Matthias Schmid, 2014. "Model-based boosting in R: a hands-on tutorial using the R package mboost," Computational Statistics, Springer, vol. 29(1), pages 3-35, February.
    9. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    10. Bonnet, Céline & Requillart, Vincent, 2010. "Is The Eu Sugar Policy Reform Likely To Increase Obesity?," 115th Joint EAAE/AAEA Seminar, September 15-17, 2010, Freising-Weihenstephan, Germany 116414, European Association of Agricultural Economists.
    11. Jorge E. Galán & María Rodríguez Moreno, 2020. "At-risk measures and financial stability," Financial Stability Review, Banco de España, issue Autumn.
    12. Dimelis, Sophia & Giotopoulos, Ioannis & Louri, Helen, 2015. "Can firms grow without credit?: evidence from the Euro Area, 2005-2011: a quantile panel analysis," LSE Research Online Documents on Economics 61157, London School of Economics and Political Science, LSE Library.
    13. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    14. Inanoglu, Hulusi & Jacobs, Michael, Jr. & Liu, Junrong & Sickles, Robin, 2015. "Analyzing Bank Efficiency: Are "Too-Big-to-Fail" Banks Efficient?," Working Papers 15-016, Rice University, Department of Economics.
    15. Ibrahim Mohamed Ali Ali & Imed Attiaoui & Rabeh Khalfaoui & Aviral Kumar Tiwari, 2022. "The Effect of Urbanization and Industrialization on Income Inequality: An Analysis Based on the Method of Moments Quantile Regression," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 161(1), pages 29-50, May.
    16. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    17. Lin, Hsin-Yi & Chu, Hao-Pang, 2013. "Are fiscal deficits inflationary?," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 214-233.
    18. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    19. Gnangnon, Sèna Kimm, 2023. "The Least developed countries' TRIPS Waiver and the Strength of Intellectual Property Protection," EconStor Preprints 271537, ZBW - Leibniz Information Centre for Economics.
    20. Natalya Presman & Tanya Suhoy, 2024. "How have government housing programs affected developers' bids in Israel Land Authority land tenders?," Bank of Israel Working Papers 2024.08, Bank of Israel.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:9:y:2013:i:1:p:18:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.