IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v7y2011i1n22.html
   My bibliography  Save this article

Reaction to Pearl's Critique of Principal Stratification

Author

Listed:
  • Sjolander Arvid

    (Karolinska Institute)

Abstract

This Reader’s Reaction contains some brief remarks regarding Pearl’s concerns regarding the value of principal stratification.

Suggested Citation

  • Sjolander Arvid, 2011. "Reaction to Pearl's Critique of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-5, April.
  • Handle: RePEc:bpj:ijbist:v:7:y:2011:i:1:n:22
    DOI: 10.2202/1557-4679.1324
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1324
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin & Ming-Wen An & Ellen MacKenzie, 2007. "Principal Stratification Designs to Estimate Input Data Missing Due to Death," Biometrics, The International Biometric Society, vol. 63(3), pages 641-649, September.
    2. Arvid Sjölander & Keith Humphreys & Stijn Vansteelandt & Rino Bellocco & Juni Palmgren, 2009. "Sensitivity Analysis for Principal Stratum Direct Effects, with an Application to a Study of Physical Activity and Coronary Heart Disease," Biometrics, The International Biometric Society, vol. 65(2), pages 514-520, June.
    3. James Robins & Andrea Rotnitzky & Stijn Vansteelandt, 2007. "Discussions," Biometrics, The International Biometric Society, vol. 63(3), pages 650-653, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawid Philip & Didelez Vanessa, 2012. ""Imagine a Can Opener"--The Magic of Principal Stratum Analysis," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-12, July.
    2. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
    2. Chiba Yasutaka, 2012. "The Large Sample Bounds on the Principal Strata Effect with Application to a Prostate Cancer Prevention Trial," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, May.
    3. Pearl Judea, 2011. "Principal Stratification -- a Goal or a Tool?," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-13, March.
    4. Yi He & Linzhi Zheng & Peng Luo, 2023. "Treatment Benefit and Treatment Harm Rates with Nonignorable Missing Covariate, Endpoint, or Treatment," Mathematics, MDPI, vol. 11(21), pages 1-18, October.
    5. Maria Josefsson & Michael J. Daniels, 2021. "Bayesian semi‐parametric G‐computation for causal inference in a cohort study with MNAR dropout and death," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 398-414, March.
    6. Anna M. Wilke & Donald P. Green & Jasper Cooper, 2020. "A placebo design to detect spillovers from an education–entertainment experiment in Uganda," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1075-1096, June.
    7. Samaneh Mahabadi & Mojtaba Ganjali, 2015. "A Bayesian approach for sensitivity analysis of incomplete multivariate longitudinal data with potential nonrandom dropout," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 397-417, December.
    8. Frederico Poleto & Geert Molenberghs & Carlos Paulino & Julio Singer, 2011. "Sensitivity analysis for incomplete continuous data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 589-606, November.
    9. Brian L. Egleston & Daniel O. Scharfstein & Ellen MacKenzie, 2009. "On Estimation of the Survivor Average Causal Effect in Observational Studies When Important Confounders Are Missing Due to Death," Biometrics, The International Biometric Society, vol. 65(2), pages 497-504, June.
    10. Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "Rejoinder on: High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 751-758, December.
    11. Siyu Heng & Dylan S. Small & Paul R. Rosenbaum, 2020. "Finding the strength in a weak instrument in a study of cognitive outcomes produced by Catholic high schools," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 935-958, June.
    12. Rose Sherri & van der Laan Mark J., 2011. "A Targeted Maximum Likelihood Estimator for Two-Stage Designs," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-21, March.
    13. Karine Lamiraud & Pierre‐Yves Geoffard, 2007. "Therapeutic non‐adherence: a rational behavior revealing patient preferences?," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1185-1204, November.
    14. von Hinke, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2016. "Genetic markers as instrumental variables," Journal of Health Economics, Elsevier, vol. 45(C), pages 131-148.
    15. Linbo Wang & Thomas S. Richardson & Xiao-Hua Zhou, 2017. "Causal analysis of ordinal treatments and binary outcomes under truncation by death," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 719-735, June.
    16. Wei Yan & Yaqin Hu & Zhi Geng, 2012. "Identifiability of Causal Effects for Binary Variables with Baseline Data Missing Due to Death," Biometrics, The International Biometric Society, vol. 68(1), pages 121-128, March.
    17. Gertheiss, Jan & Goldsmith, Jeff & Staicu, Ana-Maria, 2017. "A note on modeling sparse exponential-family functional response curves," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 46-52.
    18. James M. Robins & Tyler J. VanderWeele & Richard D. Gill, 2015. "A Proof of Bell's Inequality in Quantum Mechanics Using Causal interactions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 329-335, June.
    19. Hua Chen, 2011. "Representations of efficient score for coarse data problems based on Neumann series expansion," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 497-509, June.
    20. Bryan E. Shepherd & Peter B. Gilbert & Charles T. Dupont, 2011. "Sensitivity Analyses Comparing Time-to-Event Outcomes Only Existing in a Subset Selected Postrandomization and Relaxing Monotonicity," Biometrics, The International Biometric Society, vol. 67(3), pages 1100-1110, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:7:y:2011:i:1:n:22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.