IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v6y2010i1n30.html
   My bibliography  Save this article

Panel Count Data Regression with Informative Observation Times

Author

Listed:
  • Buzkova Petra

    (University of Washington)

Abstract

When patients are monitored for potentially recurrent events such as infections or tumor metastases, it is common for clinicians to ask patients to come back sooner for follow-ups based on the results of the most recent exam. This means that subjects' observation times will be irregular and related to subject-specific factors. Previously proposed methods for handling such panel count data assume that the dependence between the events process and the observation time process is governed by time-independent factors. This article considers situations where the observation times are predicted by time-varying factors such as the outcome observed at the last visit or cumulative exposure. Using a joint modelling approach, we propose a class of inverse-intensity-rate-ratio weighted estimators that are root-n consistent and asymptotically normal. The proposed estimators use estimating equations and are fairly simple and easy to compute. We demonstrate the performance of the method using simulated data and illustrate the approach using a cancer study dataset.

Suggested Citation

  • Buzkova Petra, 2010. "Panel Count Data Regression with Informative Observation Times," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-24, September.
  • Handle: RePEc:bpj:ijbist:v:6:y:2010:i:1:n:30
    DOI: 10.2202/1557-4679.1239
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1239
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Sun & L. J. Wei, 2000. "Regression analysis of panel count data with covariate‐dependent observation and censoring times," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 293-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faysal Satter & Yichuan Zhao & Ni Li, 2024. "Empirical likelihood inference for the panel count data with informative observation process," Statistical Papers, Springer, vol. 65(5), pages 3039-3061, July.
    2. Sy Han Chiou & Gongjun Xu & Jun Yan & Chiung‐Yu Huang, 2018. "Semiparametric estimation of the accelerated mean model with panel count data under informative examination times," Biometrics, The International Biometric Society, vol. 74(3), pages 944-953, September.
    3. Yayuan Zhu & Ziqi Chen & Jerald F. Lawless, 2022. "Semiparametric analysis of interval‐censored failure time data with outcome‐dependent observation schemes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 236-264, March.
    4. Li, Yang & Zhao, Hui & Sun, Jianguo & Kim, KyungMann, 2014. "Nonparametric tests for panel count data with unequal observation processes," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 103-111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    2. Jianguo Sun & Xingwei Tong & Xin He, 2007. "Regression Analysis of Panel Count Data with Dependent Observation Times," Biometrics, The International Biometric Society, vol. 63(4), pages 1053-1059, December.
    3. Gang Cheng & Ying Zhang & Liqiang Lu, 2011. "Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 567-579.
    4. Li, Yang & Zhao, Hui & Sun, Jianguo & Kim, KyungMann, 2014. "Nonparametric tests for panel count data with unequal observation processes," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 103-111.
    5. N. Balakrishnan & Xingqiu Zhao, 2011. "A class of multi-sample nonparametric tests for panel count data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 135-156, February.
    6. Chen, Xuerong & Tang, Niansheng & Zhou, Yong, 2016. "Quantile regression of longitudinal data with informative observation times," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 176-188.
    7. Da Xu & Hui Zhao & Jianguo Sun, 2018. "Joint analysis of interval-censored failure time data and panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 94-109, January.
    8. Yang Wang & Zhangsheng Yu, 2022. "A kernel regression model for panel count data with nonparametric covariate functions," Biometrics, The International Biometric Society, vol. 78(2), pages 586-597, June.
    9. Xingwei Tong & Xin He & Liuquan Sun & Jianguo Sun, 2009. "Variable Selection for Panel Count Data via Non‐Concave Penalized Estimating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 620-635, December.
    10. Zhao, Qiang & Sun, Jianguo, 2006. "Semiparametric and nonparametric analysis of recurrent events with observation gaps," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1924-1933, December.
    11. Jie Zhou & Haixiang Zhang & Liuquan Sun & Jianguo Sun, 2017. "Joint analysis of panel count data with an informative observation process and a dependent terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 560-584, October.
    12. Li, Yang & He, Xin & Wang, Haiying & Zhang, Bin & Sun, Jianguo, 2015. "Semiparametric regression of multivariate panel count data with informative observation times," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 209-219.
    13. Xin He & Xuenan Feng & Xingwei Tong & Xingqiu Zhao, 2017. "Semiparametric partially linear varying coefficient models with panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 439-466, July.
    14. Xingqiu Zhao & Jie Zhou & Liuquan Sun, 2011. "Semiparametric Transformation Models with Time-Varying Coefficients for Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 67(2), pages 404-414, June.
    15. Xingqiu Zhao & N. Balakrishnan & Jianguo Sun, 2011. "Nonparametric inference based on panel count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 1-42, May.
    16. Debashis Ghosh & D. Y. Lin, 2003. "Semiparametric Analysis of Recurrent Events Data in the Presence of Dependent Censoring," Biometrics, The International Biometric Society, vol. 59(4), pages 877-885, December.
    17. Ying Zhang & Mortaza Jamshidian, 2003. "The Gamma-Frailty Poisson Model for the Nonparametric Estimation of Panel Count Data," Biometrics, The International Biometric Society, vol. 59(4), pages 1099-1106, December.
    18. Yijun Wang & Weiwei Wang, 2021. "Quantile estimation of semiparametric model with time-varying coefficients for panel count data," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-18, December.
    19. Zhao, Xingqiu & Tong, Xingwei, 2011. "Semiparametric regression analysis of panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 291-300, January.
    20. Dandan Liu & Douglas E. Schaubel & John D. Kalbfleisch, 2012. "Computationally Efficient Marginal Models for Clustered Recurrent Event Data," Biometrics, The International Biometric Society, vol. 68(2), pages 637-647, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:6:y:2010:i:1:n:30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.