IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v12y2016i2p21n6.html
   My bibliography  Save this article

A Binomial Integer-Valued ARCH Model

Author

Listed:
  • Ristić Miroslav M.

    (Department of Mathematics, University of Niš, Niš, Serbia)

  • Weiß Christian H.

    (Department of Mathematics and Statistics, Helmut Schmidt University Hamburg, Hamburg, Germany)

  • Janjić Ana D.

    (Department of Mathematics, University of Niš, Niš, Serbia)

Abstract

We present an integer-valued ARCH model which can be used for modeling time series of counts with under-, equi-, or overdispersion. The introduced model has a conditional binomial distribution, and it is shown to be strictly stationary and ergodic. The unknown parameters are estimated by three methods: conditional maximum likelihood, conditional least squares and maximum likelihood type penalty function estimation. The asymptotic distributions of the estimators are derived. A real application of the novel model to epidemic surveillance is briefly discussed. Finally, a generalization of the introduced model is considered by introducing an integer-valued GARCH model.

Suggested Citation

  • Ristić Miroslav M. & Weiß Christian H. & Janjić Ana D., 2016. "A Binomial Integer-Valued ARCH Model," The International Journal of Biostatistics, De Gruyter, vol. 12(2), pages 1-21, November.
  • Handle: RePEc:bpj:ijbist:v:12:y:2016:i:2:p:21:n:6
    DOI: 10.1515/ijb-2015-0051
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2015-0051
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2015-0051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruey S. Tsay, 1992. "Model Checking Via Parametric Bootstraps in Time Series Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. E. Ioannidis & G. A. Chronis, 2005. "Extreme Spectra of Var Models and Orders of Near‐Cointegration," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(3), pages 399-421, May.
    2. Christian Weiß, 2015. "A Poisson INAR(1) model with serially dependent innovations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 829-851, October.
    3. John P. Miller & Paul Newbold, 1995. "A GENERALIZED VARIANCE RATIO TEST OF ARIMA (p, 1, q) MODEL SPECIFICATION," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(4), pages 403-413, July.
    4. Newbold, Paul & Leybourne, Stephen & Wohar, Mark E., 2001. "Trend-stationarity, difference-stationarity, or neither: further diagnostic tests with an application to U.S. Real GNP, 1875-1993," Journal of Economics and Business, Elsevier, vol. 53(1), pages 85-102.
    5. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
    6. Christian H. Weiß & Martin H.-J. M. Feld & Naushad Mamode Khan & Yuvraj Sunecher, 2019. "INARMA Modeling of Count Time Series," Stats, MDPI, vol. 2(2), pages 1-37, June.
    7. Vance L. Martin & Andrew R. Tremayne & Robert C. Jung, 2014. "Efficient Method Of Moments Estimators For Integer Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 491-516, November.
    8. Zacharias Psaradakis, 1998. "Bootstrap-based evaluation of markov-switching time series models," Econometric Reviews, Taylor & Francis Journals, vol. 17(3), pages 275-288.
    9. Robert C. Jung & Andrew R. Tremayne, 2020. "Maximum-Likelihood Estimation in a Special Integer Autoregressive Model," Econometrics, MDPI, vol. 8(2), pages 1-15, June.
    10. Cláudia Santos & Isabel Pereira & Manuel G. Scotto, 2021. "On the theory of periodic multivariate INAR processes," Statistical Papers, Springer, vol. 62(3), pages 1291-1348, June.
    11. Adriana Bortoluzzo & Pedro Morettin & Clelia Toloi, 2010. "Time-varying autoregressive conditional duration model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 847-864.
    12. Grunwald, Gary K. & Hyndman, Rob J., 1998. "Smoothing non-Gaussian time series with autoregressive structure," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 171-191, August.
    13. Andreea Röthig & Andreas Röthig & Carl Chiarella, 2015. "On Candlestick-based Trading Rules Profitability Analysis via Parametric Bootstraps and Multivariate Pair-Copula based Models," Research Paper Series 362, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. Yongning Wang & Ruey S. Tsay, 2013. "On Diagnostic Checking of Vector ARMA-GARCH Models with Gaussian and Student-t Innovations," Econometrics, MDPI, vol. 1(1), pages 1-31, April.
    15. Jentsch, Carsten & Weiß, Christian, 2017. "Bootstrapping INAR models," Working Papers 17-02, University of Mannheim, Department of Economics.
    16. Nielsen, Henrik Aa. & Madsen, Henrik, 2001. "A generalization of some classical time series tools," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 13-31, July.
    17. Bortoluzzo, Adriana B. & Morettin, Pedro A. & Toloi, Clelia M. C., 2008. "Time-Varying Autoregressive Conditional Duration Model," Insper Working Papers wpe_174, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:12:y:2016:i:2:p:21:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.