IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v2y2019i2p22-320d236899.html
   My bibliography  Save this article

INARMA Modeling of Count Time Series

Author

Listed:
  • Christian H. Weiß

    (Department of Mathematics and Statistics, Helmut Schmidt University, 22043 Hamburg, Germany)

  • Martin H.-J. M. Feld

    (Department of Mathematics and Statistics, Helmut Schmidt University, 22043 Hamburg, Germany)

  • Naushad Mamode Khan

    (Department of Economics and Statistics, University of Mauritius, Reduit 80837, Mauritius)

  • Yuvraj Sunecher

    (School of Business, Management and Finance, University of Technology, La Tour Koenig 11134, Mauritius)

Abstract

While most of the literature about INARMA models (integer-valued autoregressive moving-average) concentrates on the purely autoregressive INAR models, we consider INARMA models that also include a moving-average part. We study moment properties and show how to efficiently implement maximum likelihood estimation. We analyze the estimation performance and consider the topic of model selection. We also analyze the consequences of choosing an inadequate model for the given count process. Two real-data examples are presented for illustration.

Suggested Citation

  • Christian H. Weiß & Martin H.-J. M. Feld & Naushad Mamode Khan & Yuvraj Sunecher, 2019. "INARMA Modeling of Count Time Series," Stats, MDPI, vol. 2(2), pages 1-37, June.
  • Handle: RePEc:gam:jstats:v:2:y:2019:i:2:p:22-320:d:236899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/2/2/22/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/2/2/22/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brännäs, Kurt & Quoreshi, Shahiduzzaman, 2004. "Integer-Valued Moving Average Modelling of the Number of Transactions in Stocks," Umeå Economic Studies 637, Umeå University, Department of Economics.
    2. Víctor Enciso‐Mora & Peter Neal & T. Subba Rao, 2009. "Efficient order selection algorithms for integer‐valued ARMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 1-18, January.
    3. Peter Neal & T. Subba Rao, 2007. "MCMC for Integer‐Valued ARMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(1), pages 92-110, January.
    4. R. K. Freeland & B. P. M. McCabe, 2004. "Analysis of low count time series data by poisson autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 701-722, September.
    5. Alzahrani, Naif & Neal, Peter & Spencer, Simon E.F. & McKinley, Trevelyan J. & Touloupou, Panayiota, 2018. "Model selection for time series of count data," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 33-44.
    6. Kurt Brännäs & Andreia Hall, 2001. "Estimation in integer‐valued moving average models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(3), pages 277-291, July.
    7. Ruey S. Tsay, 1992. "Model Checking Via Parametric Bootstraps in Time Series Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schatz, Michael & Wheatley, Spencer & Sornette, Didier, 2022. "The ARMA Point Process and its Estimation," Econometrics and Statistics, Elsevier, vol. 24(C), pages 164-182.
    2. Kai Yang & Han Li & Dehui Wang & Chenhui Zhang, 2021. "Random coefficients integer-valued threshold autoregressive processes driven by logistic regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 533-557, December.
    3. Wagner Barreto‐Souza & Hernando Ombao, 2022. "The negative binomial process: A tractable model with composite likelihood‐based inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 568-592, June.
    4. Christian Weiß, 2015. "A Poisson INAR(1) model with serially dependent innovations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 829-851, October.
    5. Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    6. Alzahrani, Naif & Neal, Peter & Spencer, Simon E.F. & McKinley, Trevelyan J. & Touloupou, Panayiota, 2018. "Model selection for time series of count data," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 33-44.
    7. Chigozie E. Utazi, 2017. "Bayesian Single Changepoint Estimation in a Parameter-driven Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 765-779, September.
    8. Mohammadipour, Maryam & Boylan, John E., 2012. "Forecast horizon aggregation in integer autoregressive moving average (INARMA) models," Omega, Elsevier, vol. 40(6), pages 703-712.
    9. Federico Bassetti & Giulia Carallo & Roberto Casarin, 2022. "First-order integer-valued autoregressive processes with Generalized Katz innovations," Papers 2202.02029, arXiv.org.
    10. E. E. Ioannidis & G. A. Chronis, 2005. "Extreme Spectra of Var Models and Orders of Near‐Cointegration," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(3), pages 399-421, May.
    11. Brännäs, Kurt, 2002. "Conditional Heteroskedasticity in some Common Count Data Models for Financial Time Series Data," Umeå Economic Studies 592, Umeå University, Department of Economics.
    12. M. Kachour & J. F. Yao, 2009. "First‐order rounded integer‐valued autoregressive (RINAR(1)) process," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 417-448, July.
    13. A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Naushad Mamode Khan, 2019. "Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data—Under Conditional Heteroskedasticity Framework," JRFM, MDPI, vol. 12(2), pages 1-13, April.
    14. Harry Joe, 2019. "Likelihood Inference for Generalized Integer Autoregressive Time Series Models," Econometrics, MDPI, vol. 7(4), pages 1-13, October.
    15. Wagner Barreto-Souza, 2015. "Zero-Modified Geometric INAR(1) Process for Modelling Count Time Series with Deflation or Inflation of Zeros," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 839-852, November.
    16. Boris Aleksandrov & Christian H. Weiß, 2020. "Parameter estimation and diagnostic tests for INMA(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 196-232, March.
    17. Giulia Carallo & Roberto Casarin & Christian P. Robert, 2020. "Generalized Poisson Difference Autoregressive Processes," Papers 2002.04470, arXiv.org.
    18. Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
    19. José M. R. Murteira & Mário A. G. Augusto, 2017. "Hurdle models of repayment behaviour in personal loan contracts," Empirical Economics, Springer, vol. 53(2), pages 641-667, September.
    20. John P. Miller & Paul Newbold, 1995. "A GENERALIZED VARIANCE RATIO TEST OF ARIMA (p, 1, q) MODEL SPECIFICATION," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(4), pages 403-413, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:2:y:2019:i:2:p:22-320:d:236899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.