IDEAS home Printed from https://ideas.repec.org/a/bpj/germec/v11y2010i3p397-401.html
   My bibliography  Save this article

Benford’s Law and Fraud Detection: Facts and Legends

Author

Listed:
  • Diekmann Andreas

    (ETH Zurich,Zurich, Germany)

  • Jann Ben

    (ETH Zurich,Zurich, Germany)

Abstract

Is Benford’s law a good instrument to detect fraud in reports of statistical and scientific data? For a valid test, the probability of ‘false positives’ and ‘false negatives’ has to be low. However, it is very doubtful whether the Benford distribution is an appropriate tool to discriminate between manipulated and non-manipulated estimates. Further research should focus more on the validity of the test and test results should be interpreted more carefully.

Suggested Citation

  • Diekmann Andreas & Jann Ben, 2010. "Benford’s Law and Fraud Detection: Facts and Legends," German Economic Review, De Gruyter, vol. 11(3), pages 397-401, August.
  • Handle: RePEc:bpj:germec:v:11:y:2010:i:3:p:397-401
    DOI: 10.1111/j.1468-0475.2010.00510.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1468-0475.2010.00510.x
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1111/j.1468-0475.2010.00510.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. John P A Ioannidis, 2005. "Why Most Published Research Findings Are False," PLOS Medicine, Public Library of Science, vol. 2(8), pages 1-1, August.
    2. Dewald, William G & Thursby, Jerry G & Anderson, Richard G, 1986. "Replication in Empirical Economics: The Journal of Money, Credit and Banking Project," American Economic Review, American Economic Association, vol. 76(4), pages 587-603, September.
    3. Andreas Diekmann, 2007. "Not the First Digit! Using Benford's Law to Detect Fraudulent Scientif ic Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(3), pages 321-329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernhard Rauch & Max G�ttsche & Stephan Langenegger, 2014. "Detecting Problems in Military Expenditure Data Using Digital Analysis," Defence and Peace Economics, Taylor & Francis Journals, vol. 25(2), pages 97-111, April.
    2. Piotr Lityński & Artur Hołuj, 2020. "Urban Sprawl Risk Delimitation: The Concept for Spatial Planning Policy in Poland," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    3. Florian El Mouaaouy & Jan Riepe, 2018. "Benford and the Internal Capital Market: A Useful Indicator of Managerial Engagement," German Economic Review, Verein für Socialpolitik, vol. 19(3), pages 309-329, August.
    4. Pankaj C. Patel & Mike G. Tsionas & Maria João Guedes, 2022. "Benford's law, small business financial reporting, and survival," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(8), pages 3301-3315, December.
    5. Druică, Elena & Oancea, Bogdan & Vâlsan, Călin, 2018. "Benford's law and the limits of digit analysis," International Journal of Accounting Information Systems, Elsevier, vol. 31(C), pages 75-82.
    6. El Mouaaouy Florian & Riepe Jan, 2018. "Benford and the Internal Capital Market: A Useful Indicator of Managerial Engagement," German Economic Review, De Gruyter, vol. 19(3), pages 309-329, August.
    7. Venuka Aggarwal & Khushdeep Dharni, 2020. "Deshelling the Shell Companies Using Benford’s Law: An Emerging Market Study," Vikalpa: The Journal for Decision Makers, , vol. 45(3), pages 160-169, September.
    8. Aineas Kostas Mallios, 2023. "Manipulation in reported dividends: Empirical evidence from US banks," Economics Bulletin, AccessEcon, vol. 43(1), pages 441-461.
    9. Cunjak Mataković Ivana, 2019. "The empirical analysis of financial reports of companies in Croatia: Benford distribution curve as a benchmark for first digits," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 5(2), pages 90-100, December.
    10. Shikano Susumu & Mack Verena, 2011. "When Does the Second-Digit Benford’s Law-Test Signal an Election Fraud?: Facts or Misleading Test Results," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(5-6), pages 719-732, October.
    11. Horton, Joanne & Krishna Kumar, Dhanya & Wood, Anthony, 2020. "Detecting academic fraud using Benford law: The case of Professor James Hunton," Research Policy, Elsevier, vol. 49(8).
    12. Justin T. Pickett, 2020. "The Stewart Retractions: A Quantitative and Qualitative Analysis," Econ Journal Watch, Econ Journal Watch, vol. 17(1), pages 152–190-1, March.
    13. Faraji Kasidi & H. Chaturvedi & Rahul Singh, 2010. "Detecting Data Error and Inaccuracy," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 4(4), pages 405-425, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diekmann Andreas, 2011. "Are Most Published Research Findings False?," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(5-6), pages 628-635, October.
    2. Eszter Czibor & David Jimenez‐Gomez & John A. List, 2019. "The Dozen Things Experimental Economists Should Do (More of)," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 371-432, October.
    3. Maren Duvendack & Richard W. Palmer-Jones & W. Robert Reed, 2015. "Replications in Economics: A Progress Report," Econ Journal Watch, Econ Journal Watch, vol. 12(2), pages 164–191-1, May.
    4. Qianwei Ying & Tahir Yousaf & Qurat ul Ain & Yasmeen Akhtar & Muhammad Shahid Rasheed, 2019. "Stock Investment and Excess Returns: A Critical Review in the Light of the Efficient Market Hypothesis," JRFM, MDPI, vol. 12(2), pages 1-22, June.
    5. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    6. Mueller-Langer, Frank & Fecher, Benedikt & Harhoff, Dietmar & Wagner, Gert G., 2019. "Replication studies in economics—How many and which papers are chosen for replication, and why?," Research Policy, Elsevier, vol. 48(1), pages 62-83.
    7. Abel Brodeur & Mathias Lé & Marc Sangnier & Yanos Zylberberg, 2016. "Star Wars: The Empirics Strike Back," American Economic Journal: Applied Economics, American Economic Association, vol. 8(1), pages 1-32, January.
    8. Andrew Y. Chen & Tom Zimmermann, 2022. "Open Source Cross-Sectional Asset Pricing," Critical Finance Review, now publishers, vol. 11(2), pages 207-264, May.
    9. Horton, Joanne & Krishna Kumar, Dhanya & Wood, Anthony, 2020. "Detecting academic fraud using Benford law: The case of Professor James Hunton," Research Policy, Elsevier, vol. 49(8).
    10. Camerer, Colin & Dreber, Anna & Forsell, Eskil & Ho, Teck-Hua & Huber, Jurgen & Johannesson, Magnus & Kirchler, Michael & Almenberg, Johan & Altmejd, Adam & Chan, Taizan & Heikensten, Emma & Holzmeist, 2016. "Evaluating replicability of laboratory experiments in Economics," MPRA Paper 75461, University Library of Munich, Germany.
    11. Kewei Hou & Chen Xue & Lu Zhang, 2017. "Replicating Anomalies," NBER Working Papers 23394, National Bureau of Economic Research, Inc.
    12. Maren Duvendack & Richard Palmer-Jones, 2013. "Replication of quantitative work in development studies: Experiences and suggestions," Progress in Development Studies, , vol. 13(4), pages 307-322, October.
    13. Chin, Jason & Zeiler, Kathryn, 2021. "Replicability in Empirical Legal Research," LawArXiv 2b5k4, Center for Open Science.
    14. Anderson, Richard G., 2017. "Should you choose to do so...: A replication paradigm," Economics Discussion Papers 2017-79, Kiel Institute for the World Economy (IfW Kiel).
    15. repec:bla:germec:v:11:y:2010:i::p:397-401 is not listed on IDEAS
    16. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    17. Michael A. Clemens, 2017. "The Meaning Of Failed Replications: A Review And Proposal," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 326-342, February.
    18. David Card, 2022. "Design-Based Research in Empirical Microeconomics," American Economic Review, American Economic Association, vol. 112(6), pages 1773-1781, June.
    19. Klos, Alexander & Rottke, Simon, 2013. "Saving and Consumption When Children Move Out," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79786, Verein für Socialpolitik / German Economic Association.
    20. Alexander Frankel & Maximilian Kasy, 2022. "Which Findings Should Be Published?," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 1-38, February.
    21. Jyotirmoy Sarkar, 2018. "Will P†Value Triumph over Abuses and Attacks?," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(4), pages 66-71, July.

    More about this item

    Keywords

    Benford’s law; fraud detection; false positive; false negative; regression coefficients;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:germec:v:11:y:2010:i:3:p:397-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.