IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v20y2005i1p31-39n5.html
   My bibliography  Save this article

A Modified Quantile Estimator Using Extreme-Value Theory with Applications

Author

Listed:
  • Vermaat M. B.

    (Institute for Business and Industrial Statistics, IBIS UvA, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands)

  • Does R. J. M. M.

    (Institute for Business and Industrial Statistics, IBIS UvA, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands)

  • Steerneman A. G. M.

    (Department of Econometrics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands)

Abstract

Reliable predictions by means of quantiles constitute one of the most important tasks not only in statistics but in entire science. Quantiles may be estimated by using Extreme- Value Theory (EVT). However, the properties of many estimators based on this theory depend heavily on the actual location. In this paper modified estimators for the quantiles are derived, the properties of which are less sensitive with respect to location. Moreover, these modified quantile estimators are also symmetric with regard to the mean for symmetric distributions, which is not the case for some of the estimators based on the EVT. The modified quantile estimators are a limiting result of an infinity shift of location of the estimators proposed by Dekkers et al. (The Annals of Statistics 17: 1833–1855, 1989). The results may be used in establishing control limits for Shewhart control charts.

Suggested Citation

  • Vermaat M. B. & Does R. J. M. M. & Steerneman A. G. M., 2005. "A Modified Quantile Estimator Using Extreme-Value Theory with Applications," Stochastics and Quality Control, De Gruyter, vol. 20(1), pages 31-39, January.
  • Handle: RePEc:bpj:ecqcon:v:20:y:2005:i:1:p:31-39:n:5
    DOI: 10.1515/EQC.2005.31
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/EQC.2005.31
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/EQC.2005.31?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed El Ghourabi & Amira Dridi & Mohamed Limam, 2015. "A new financial stress index model based on support vector regression and control chart," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(4), pages 775-788, April.
    2. Imed Gammoudi & Lotfi BelKacem & Mohamed El Ghourabi, 2014. "Value at Risk Estimation for Heavy Tailed Distributions," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 8(3), pages 109-125.
    3. Amira Dridi & Mohamed El Ghourabi & Mohamed Limam, 2012. "On monitoring financial stress index with extreme value theory," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 329-339, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    2. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    3. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    4. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    5. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    6. Gadea Rivas, María Dolores & Gonzalo, Jesús & Olmo, José, 2024. "Testing extreme warming and geographical heterogeneity," UC3M Working papers. Economics 45023, Universidad Carlos III de Madrid. Departamento de Economía.
    7. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    8. Allen, Michael R. & Datta, Somnath, 1999. "Estimation of the index parameter for autoregressive data using the estimated innovations," Statistics & Probability Letters, Elsevier, vol. 41(3), pages 315-324, February.
    9. Phornchanok Cumperayot & Casper G. de Vries, 2006. "Large Swings in Currencies driven by Fundamentals," Tinbergen Institute Discussion Papers 06-086/2, Tinbergen Institute.
    10. Virta, Joni & Lietzén, Niko & Viitasaari, Lauri & Ilmonen, Pauliina, 2024. "Latent model extreme value index estimation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    11. Christian Schluter, 2021. "On Zipf’s law and the bias of Zipf regressions," Empirical Economics, Springer, vol. 61(2), pages 529-548, August.
    12. Gomes, M. Ivette & Neves, Cláudia, 2008. "Asymptotic comparison of the mixed moment and classical extreme value index estimators," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 643-653, April.
    13. Einmahl, J.H.J. & de Haan, L.F.M. & Krajina, A., 2009. "Estimating Extreme Bivariate Quantile Regions," Other publications TiSEM 007ce0a9-dd94-4301-ad62-1, Tilburg University, School of Economics and Management.
    14. Estate Khmaladze & Wolfgang Weil, 2008. "Local empirical processes near boundaries of convex bodies," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 813-842, December.
    15. Igor Fedotenkov, 2014. "A note on the bootstrap method for testing the existence of finite moments," Statistica, Department of Statistics, University of Bologna, vol. 74(4), pages 447-453.
    16. Li, Zhouping & Gong, Yun & Peng, Liang, 2010. "Empirical likelihood method for intermediate quantiles," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1022-1029, June.
    17. Yi He & John H. J. Einmahl, 2017. "Estimation of extreme depth-based quantile regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 449-461, March.
    18. Ana Ferreira & Casper G. de Vries, 2004. "Optimal Confidence Intervals for the Tail Index and High Quantiles," Tinbergen Institute Discussion Papers 04-090/2, Tinbergen Institute.
    19. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2024. "Extreme expectile estimation for short-tailed data," Journal of Econometrics, Elsevier, vol. 241(2).
    20. Einmahl, John H.J. & de Haan, Laurens & Sinha, Ashoke Kumar, 1997. "Estimating the spectral measure of an extreme value distribution," Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 143-171, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:20:y:2005:i:1:p:31-39:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.