IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v9y2021i1p83-108n4.html
   My bibliography  Save this article

A fundamental measure of treatment effect heterogeneity

Author

Listed:
  • Levy Jonathan

    (UC Berkeley School of Public Health, University of California, Berkeley, California, United States of America)

  • van der Laan Mark

    (UC Berkeley School of Public Health, University of California, Berkeley, California, United States of America)

  • Hubbard Alan

    (UC Berkeley School of Public Health, University of California, Berkeley, California, United States of America)

  • Pirracchio Romain

    (University of California San Francisco, ZSFG Anesthesia and Perioperative Care, San Francisco, CA, United States of America)

Abstract

The stratum-specific treatment effect function is a random variable giving the average treatment effect (ATE) for a randomly drawn stratum of potential confounders a clinician may use to assign treatment. In addition to the ATE, the variance of the stratum-specific treatment effect function is fundamental in determining the heterogeneity of treatment effect values. We offer a non-parametric plug-in estimator, the targeted maximum likelihood estimator (TMLE) and the cross-validated TMLE (CV-TMLE), to simultaneously estimate both the average and variance of the stratum-specific treatment effect function. The CV-TMLE is preferable because it guarantees asymptotic efficiency under two conditions without needing entropy conditions on the initial fits of the outcome model and treatment mechanism, as required by TMLE. Particularly, in circumstances where data adaptive fitting methods are very important to eliminate bias but hold no guarantee of satisfying the entropy condition, we show that the CV-TMLE sampling distributions maintain normality with a lower mean squared error than TMLE. In addition to verifying the theoretical properties of TMLE and CV-TMLE through simulations, we highlight some of the challenges in estimating the variance of the treatment effect, which lack double robustness and might be biased if the true variance is small and sample size insufficient.

Suggested Citation

  • Levy Jonathan & van der Laan Mark & Hubbard Alan & Pirracchio Romain, 2021. "A fundamental measure of treatment effect heterogeneity," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 83-108, January.
  • Handle: RePEc:bpj:causin:v:9:y:2021:i:1:p:83-108:n:4
    DOI: 10.1515/jci-2019-0003
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2019-0003
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2019-0003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
    2. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    3. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Sanchez-Becerra, 2023. "Robust inference for the treatment effect variance in experiments using machine learning," Papers 2306.03363, arXiv.org.
    2. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    2. Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
    3. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    4. Backer, David & Billing, Trey, 2024. "Forecasting the prevalence of child acute malnutrition using environmental and conflict conditions as leading indicators," World Development, Elsevier, vol. 176(C).
    5. James J. Heckman, 1991. "Randomization and Social Policy Evaluation Revisited," NBER Technical Working Papers 0107, National Bureau of Economic Research, Inc.
    6. Jeffrey Smith, 2000. "A Critical Survey of Empirical Methods for Evaluating Active Labor Market Policies," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 136(III), pages 247-268, September.
    7. Mariana Oliveira & Luís Torgo & Vítor Santos Costa, 2021. "Evaluation Procedures for Forecasting with Spatiotemporal Data," Mathematics, MDPI, vol. 9(6), pages 1-27, March.
    8. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    9. Burt S. Barnow & Jeffrey Smith, 2015. "Employment and Training Programs," NBER Chapters, in: Economics of Means-Tested Transfer Programs in the United States, Volume 2, pages 127-234, National Bureau of Economic Research, Inc.
    10. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    11. Gnangnon, Sèna Kimm, 2023. "The Least developed countries' TRIPS Waiver and the Strength of Intellectual Property Protection," EconStor Preprints 271537, ZBW - Leibniz Information Centre for Economics.
    12. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    13. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    14. Pablo Lavado & Gonzalo Rivera, 2016. "Identifying Treatment Effects with Data Combination and Unobserved Heterogeneity," Working Papers 79, Peruvian Economic Association.
    15. Gabriella Conti & James J. Heckman & Rodrigo Pinto, 2016. "The Effects of Two Influential Early Childhood Interventions on Health and Healthy Behaviour," Economic Journal, Royal Economic Society, vol. 126(596), pages 28-65, October.
    16. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    17. Andrew Chesher & Adam M. Rosen, 2021. "Counterfactual Worlds," Annals of Economics and Statistics, GENES, issue 142, pages 311-335.
    18. Heckman, James, 2001. "Accounting for Heterogeneity, Diversity and General Equilibrium in Evaluating Social Programmes," Economic Journal, Royal Economic Society, vol. 111(475), pages 654-699, November.
    19. Vishal Kamat, 2017. "Identifying the Effects of a Program Offer with an Application to Head Start," Papers 1711.02048, arXiv.org, revised Aug 2023.
    20. Okeke, Edward N. & Adepiti, Clement A. & Ajenifuja, Kayode O., 2013. "What is the price of prevention? New evidence from a field experiment," Journal of Health Economics, Elsevier, vol. 32(1), pages 207-218.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:9:y:2021:i:1:p:83-108:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.