IDEAS home Printed from https://ideas.repec.org/a/bpj/bejtec/v17y2017i2p16n7.html
   My bibliography  Save this article

Strong Forward Induction

Author

Listed:
  • Zheng Bingyong

    (School of Economics, Shanghai University of Finance and Economics, 777 Guoding Rd., Shanghai, China200433)

Abstract

Forward induction, as defined by Govindan and Wilson (2009. “On Forward Induction.” Econometrica 77:1–28), places a local dominance condition on off-equilibrium beliefs that restricts relevant strategy profiles for an equilibrium outcome to be infinitely more likely than profiles that include irrelevant strategies. Meanwhile, it places no global dominance restrictions and thus leaves open the possibility that a dominated strategy is deemed more likely than strategies dominating it. This paper defines strong forward induction, which improves upon forward induction. We also develop a solution concept called strong forward induction equilibrium that is obtained from iterative application of the strong forward induction criterion.

Suggested Citation

  • Zheng Bingyong, 2017. "Strong Forward Induction," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 17(2), pages 1-16, June.
  • Handle: RePEc:bpj:bejtec:v:17:y:2017:i:2:p:16:n:7
    DOI: 10.1515/bejte-2016-0067
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/bejte-2016-0067
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/bejte-2016-0067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    2. Battigalli, Pierpaolo & Siniscalchi, Marciano, 2007. "Interactive epistemology in games with payoff uncertainty," Research in Economics, Elsevier, vol. 61(4), pages 165-184, December.
    3. Reny, Philip J, 1992. "Backward Induction, Normal Form Perfection and Explicable Equilibria," Econometrica, Econometric Society, vol. 60(3), pages 627-649, May.
    4. Banks, Jeffrey S & Sobel, Joel, 1987. "Equilibrium Selection in Signaling Games," Econometrica, Econometric Society, vol. 55(3), pages 647-661, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srihari Govindan & Robert Wilson, 2009. "On Forward Induction," Econometrica, Econometric Society, vol. 77(1), pages 1-28, January.
    2. Man, Priscilla T.Y., 2012. "Forward induction equilibrium," Games and Economic Behavior, Elsevier, vol. 75(1), pages 265-276.
    3. Feinberg, Yossi, 2005. "Subjective reasoning--dynamic games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 54-93, July.
    4. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    5. Catonini, Emiliano, 2020. "On non-monotonic strategic reasoning," Games and Economic Behavior, Elsevier, vol. 120(C), pages 209-224.
    6. Battigalli, Pierpaolo & De Vito, Nicodemo, 2021. "Beliefs, plans, and perceived intentions in dynamic games," Journal of Economic Theory, Elsevier, vol. 195(C).
    7. Zuazo-Garin, Peio, 2017. "Uncertain information structures and backward induction," Journal of Mathematical Economics, Elsevier, vol. 71(C), pages 135-151.
    8. Govindan, Srihari & Wilson, Robert B., 2008. "Decision-Theoretic Forward Induction," Research Papers 1986, Stanford University, Graduate School of Business.
    9. Perea, Andrés, 2017. "Forward induction reasoning and correct beliefs," Journal of Economic Theory, Elsevier, vol. 169(C), pages 489-516.
    10. Andrés Perea & Elias Tsakas, 2019. "Limited focus in dynamic games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 571-607, June.
    11. Dominiak, Adam & Lee, Dongwoo, 2023. "Testing rational hypotheses in signaling games," European Economic Review, Elsevier, vol. 160(C).
    12. Heifetz Aviad & Meier Martin & Schipper Burkhard C., 2021. "Prudent Rationalizability in Generalized Extensive-form Games with Unawareness," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 21(2), pages 525-556, June.
    13. Battigalli, Pierpaolo & Leonetti, Paolo & Maccheroni, Fabio, 2020. "Behavioral equivalence of extensive game structures," Games and Economic Behavior, Elsevier, vol. 121(C), pages 533-547.
    14. Battigalli Pierpaolo & Di Tillio Alfredo & Grillo Edoardo & Penta Antonio, 2011. "Interactive Epistemology and Solution Concepts for Games with Asymmetric Information," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 11(1), pages 1-40, March.
    15. Geir B. Asheim & Martin Dufwenberg, 2003. "Deductive Reasoning in Extensive Games," Economic Journal, Royal Economic Society, vol. 113(487), pages 305-325, April.
    16. Heifetz, Aviad & Meier, Martin & Schipper, Burkhard C., 2013. "Dynamic unawareness and rationalizable behavior," Games and Economic Behavior, Elsevier, vol. 81(C), pages 50-68.
    17. Heifetz, Aviad & Meier, Martin & Schipper, Burkhard C, 2011. "Prudent rationalizability in generalized extensive-form games," MPRA Paper 30220, University Library of Munich, Germany.
    18. Battigalli, Pierpaolo, 2003. "Rationalizability in infinite, dynamic games with incomplete information," Research in Economics, Elsevier, vol. 57(1), pages 1-38, March.
    19. Manili, Julien, 2024. "Order independence for rationalizability," Games and Economic Behavior, Elsevier, vol. 143(C), pages 152-160.
    20. Battigalli, Pierpaolo, 1997. "On Rationalizability in Extensive Games," Journal of Economic Theory, Elsevier, vol. 74(1), pages 40-61, May.

    More about this item

    Keywords

    forward induction; belief; equilibrium refinement;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:bejtec:v:17:y:2017:i:2:p:16:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.