IDEAS home Printed from https://ideas.repec.org/a/bpj/apjrin/v15y2021i1p21n5.html
   My bibliography  Save this article

Hurricane Bond Price Dependency on Underlying Hurricane Parameters

Author

Listed:
  • Chang Carolyn W.

    (Department of Finance, California State University, Fullerton, USA)

  • Feng Yalan

    (Department of Finance & Law, California State University, Los Angeles, USA)

Abstract

Hurricane bonds are parametric in nature as they have a dual-exercise structure: the first exercise is conditional on the hurricane’s physical landfall location and the second is conditional upon the embedded option ending in-the-money. We propose a coupled and physically-based hurricane bond pricing model via Monte Carlo simulation that resolves the dual exercise, which was not addressed in extant loss-based catastrophe bond pricing models. This coupled model is developed at the nexus of atmospheric science and finance by integrating hurricane risk modeling and option pricing. By applying this model to price a parametric hurricane bond, we demonstrate how a hurricane bond’s price is sensitive to its underlying hurricane’s physical parameters – genesis, heading, translation speed, velocity, and radius.

Suggested Citation

  • Chang Carolyn W. & Feng Yalan, 2021. "Hurricane Bond Price Dependency on Underlying Hurricane Parameters," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 15(1), pages 1-21, January.
  • Handle: RePEc:bpj:apjrin:v:15:y:2021:i:1:p:21:n:5
    DOI: 10.1515/apjri-2020-0017
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/apjri-2020-0017
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/apjri-2020-0017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2017. "A fast intensity simulator for tropical cyclone risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 779-796, September.
    2. Zhao, Yang & Yu, Min-Teh, 2019. "Measuring the liquidity impact on catastrophe bond spreads," Pacific-Basin Finance Journal, Elsevier, vol. 56(C), pages 197-210.
    3. Carolyn W. Chang & Jack S. K. Chang & Min-Ming Wen, 2014. "Optimum Hurricane Futures Hedge in a Warming Environment: A Risk–Return Jump-Diffusion Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(1), pages 199-217, March.
    4. repec:fth:geneec:99.01 is not listed on IDEAS
    5. Robert E. Hoyt & Kathleen A. McCullough, 1999. "Catastrophe Insurance Options: Are They Zero-Beta Assets?," Journal of Insurance Issues, Western Risk and Insurance Association, vol. 22(2), pages 147-163.
    6. Wolfgang Karl Härdle & Brenda López Cabrera, 2010. "Calibrating CAT Bonds for Mexican Earthquakes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 625-650, September.
    7. Wolfgang Karl Härdle & Brenda López Cabrera, 2010. "Calibrating CAT Bonds for Mexican Earthquakes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 625-650, September.
    8. Chia‐Chien Chang & Jen‐Wei Yang & Min‐Teh Yu, 2018. "Hurricane Risk Management With Climate And Co2 Indices," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(3), pages 695-720, September.
    9. Nadine Gatzert & Sebastian Pokutta & Nikolai Vogl, 2019. "Convergence Of Capital And Insurance Markets: Consistent Pricing Of Index‐Linked Catastrophe Loss Instruments," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 86(1), pages 39-72, March.
    10. Jarrow, Robert A., 2010. "A simple robust model for Cat bond valuation," Finance Research Letters, Elsevier, vol. 7(2), pages 72-79, June.
    11. Carolyn W. Chang & Jack S. K. Chang & Min‐Teh Yu & Yang Zhao, 2020. "Portfolio optimization in the catastrophe space," European Financial Management, European Financial Management Association, vol. 26(5), pages 1414-1448, November.
    12. Henri Louberge & Evis Kellezi & Manfred Gilli, 1999. "Using Catastrophe-Linked Securities to Diversity Insurance Risk: A Financial Analysis of Cat Bonds," Journal of Insurance Issues, Western Risk and Insurance Association, vol. 22(2), pages 125-146.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolyn W. Chang & Jack S. K. Chang & Min‐Teh Yu & Yang Zhao, 2020. "Portfolio optimization in the catastrophe space," European Financial Management, European Financial Management Association, vol. 26(5), pages 1414-1448, November.
    2. Ben Ammar, Semir & Braun, Alexander & Eling, Martin, 2015. "Alternative Risk Transfer and Insurance-Linked Securities: Trends, Challenges and New Market Opportunities," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 56, number 56.
    3. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    4. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    5. Y. Esmaeelzade Aghdam & A. Neisy & A. Adl, 2024. "Simulating and Pricing CAT Bonds Using the Spectral Method Based on Chebyshev Basis," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 423-435, January.
    6. Sukono & Hafizan Juahir & Riza Andrian Ibrahim & Moch Panji Agung Saputra & Yuyun Hidayat & Igif Gimin Prihanto, 2022. "Application of Compound Poisson Process in Pricing Catastrophe Bonds: A Systematic Literature Review," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
    7. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Research Paper Series 379, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Zied Chaieb & Djibril Gueye, 2022. "Pricing zero-coupon CAT bonds using the enlargement of ltration theory: a general framework ," Post-Print hal-03745077, HAL.
    9. Krzysztof Burnecki & Mario Nicoló Giuricich, 2017. "Stable Weak Approximation at Work in Index-Linked Catastrophe Bond Pricing," Risks, MDPI, vol. 5(4), pages 1-19, December.
    10. Zied Chaieb & Djibril Gueye, 2022. "Pricing zero-coupon CAT bonds using the enlargement of ltration theory: a general framework," Papers 2208.02609, arXiv.org.
    11. Shao, Jia & Papaioannou, Apostolos D. & Pantelous, Athanasios A., 2017. "Pricing and simulating catastrophe risk bonds in a Markov-dependent environment," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 68-84.
    12. Han-Bin KANG & Hsuling CHANG & Tsangyao CHANG, 2022. "Catastrophe Reinsurance Pricing -Modification of Dynamic Asset-Liability Management," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-20, December.
    13. Ho, Joanne & Odening, Martin, 2009. "Weather-based estimation of wildfire risk," SFB 649 Discussion Papers 2009-032, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Riza Andrian Ibrahim & Sukono & Herlina Napitupulu & Rose Irnawaty Ibrahim, 2024. "Earthquake Bond Pricing Model Involving the Inconstant Event Intensity and Maximum Strength," Mathematics, MDPI, vol. 12(6), pages 1-21, March.
    15. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    16. Borensztein, Eduardo & Cavallo, Eduardo & Jeanne, Olivier, 2017. "The welfare gains from macro-insurance against natural disasters," Journal of Development Economics, Elsevier, vol. 124(C), pages 142-156.
    17. Truong, Chi & Trück, Stefan, 2016. "It’s not now or never: Implications of investment timing and risk aversion on climate adaptation to extreme events," European Journal of Operational Research, Elsevier, vol. 253(3), pages 856-868.
    18. Lo, Chien-Ling & Lee, Jin-Ping & Yu, Min-Teh, 2013. "Valuation of insurers’ contingent capital with counterparty risk and price endogeneity," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5025-5035.
    19. Peter Carayannopoulos & Olga Kanj & M. Fabricio Perez, 2022. "Pricing dynamics in the market for catastrophe bonds," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(1), pages 172-202, January.
    20. Harsh K. Mistry & Domenico Lombardi, 2023. "A stochastic exposure model for seismic risk assessment and pricing of catastrophe bonds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 803-829, May.

    More about this item

    Keywords

    hurricane bonds; hurricane risk management; parametric trigger; hurricane risk modeling; option pricing modeling;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:apjrin:v:15:y:2021:i:1:p:21:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.