IDEAS home Printed from https://ideas.repec.org/a/bpj/ajlecn/v11y2020i2p00n1.html
   My bibliography  Save this article

The Impact of Artificial Intelligence on the Right to a Fair Trial: Towards a Robot Judge?

Author

Listed:
  • Ulenaers Jasper

    (Universität Hamburg Fakultät für Rechtswissenschaft, Hamburg, Germany)

Abstract

This paper seeks to examine the potential influences AI may have on the right to a fair trial when it is used in the courtroom. Essentially, AI systems can assume two roles in the courtroom. On the one hand, “AI assistants” can support judges in their decision-making process by predicting and preparing judicial decisions; on the other hand, “robot judges” can replace human judges and decide cases autonomously in fully automated court proceedings. Both roles will be tested against the requirements of the right to a fair trial as protected by Article 6 ECHR.An important element in this test is the role that a human judge plays in legal proceedings. As the justice system is a social process, the AI assistant is preferred to a situation in which a robot judge would completely replace human judges. Based on extensive literature, various examples and case studies, this paper concludes that the use of AI assistants can better serve legitimacy and guarantee a fair trial.

Suggested Citation

  • Ulenaers Jasper, 2020. "The Impact of Artificial Intelligence on the Right to a Fair Trial: Towards a Robot Judge?," Asian Journal of Law and Economics, De Gruyter, vol. 11(2), pages 1, August.
  • Handle: RePEc:bpj:ajlecn:v:11:y:2020:i:2:p:00:n:1
    DOI: 10.1515/ajle-2020-0008
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ajle-2020-0008
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ajle-2020-0008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Martin Katz & Michael J Bommarito II & Josh Blackman, 2017. "A general approach for predicting the behavior of the Supreme Court of the United States," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dovilė Barysė, 2022. "People’s Attitudes towards Technologies in Courts," Laws, MDPI, vol. 11(5), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davis, Yehuda & Govindaraj, Suresh & Suslava, Kate, 2024. "Does the stock market anticipate events and supreme court decisions in corporate cases?," Global Finance Journal, Elsevier, vol. 60(C).
    2. Anthony Niblett, 2018. "Regulatory Reform in Ontario: Machine Learning and Regulation," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 507, March.
    3. Yıldırım, Engin & Sert, Mehmet Fatih & Kartal, Burcu & Çalış, Şuayyip, 2023. "Non-compliance of the European Court of Human Rights decisions: A machine learning analysis," International Review of Law and Economics, Elsevier, vol. 76(C).
    4. Prof. Dr.Sejdi Rexhepi & Mjellma Kadriu, 2018. "The Importance of Resource Assessment for Entrepreneurship and Local Economic Development in Kosovo," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 4, January -.
    5. Amedeo Santosuosso & Giulia Pinotti, 2020. "Bottleneck or Crossroad? Problems of Legal Sources Annotation and Some Theoretical Thoughts," Stats, MDPI, vol. 3(3), pages 1-20, September.
    6. Alain Marciano & Antonio Nicita & Giovanni Battista Ramello, 2020. "Big data and big techs: understanding the value of information in platform capitalism," European Journal of Law and Economics, Springer, vol. 50(3), pages 345-358, December.
    7. Zhong, Weifeng & Chan, Julian, 2020. "Predicting Authoritarian Crackdowns: A Machine Learning Approach," Working Papers 10464, George Mason University, Mercatus Center.
    8. Bruno Mathis, 2022. "Extracting Proceedings Data from Court Cases with Machine Learning," Stats, MDPI, vol. 5(4), pages 1-16, December.
    9. Bălan Carmen, 2018. "The Impact of Conversational Agents on Humans in Services: Research Questions and Hypotheses," International Conference on Marketing and Business Development Journal, The Bucharest University of Economic Studies, vol. 1(2), pages 33-55, December.
    10. So-Hui Park & Dong-Gu Lee & Jin-Sung Park & Jun-Woo Kim, 2021. "A Survey of Research on Data Analytics-Based Legal Tech," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    11. , Aisdl, 2020. "Becoming Attuned," OSF Preprints j7f8y, Center for Open Science.
    12. Bokwon Lee & Kyu-Min Lee & Jae-Suk Yang, 2019. "Network structure reveals patterns of legal complexity in human society: The case of the Constitutional legal network," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-15, January.
    13. Giansiracusa, Noah & Ricciardi, Cameron, 2019. "Computational geometry and the U.S. Supreme Court," Mathematical Social Sciences, Elsevier, vol. 98(C), pages 1-9.
    14. Daniyal Alghazzawi & Omaimah Bamasag & Aiiad Albeshri & Iqra Sana & Hayat Ullah & Muhammad Zubair Asghar, 2022. "Efficient Prediction of Court Judgments Using an LSTM+CNN Neural Network Model with an Optimal Feature Set," Mathematics, MDPI, vol. 10(5), pages 1-30, February.
    15. Yang, Guancan & Lu, Guoxuan & Xu, Shuo & Chen, Liang & Wen, Yuxin, 2023. "Which type of dynamic indicators should be preferred to predict patent commercial potential?," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    16. Mindock, Maxwell R. & Waddell, Glen R., 2019. "Vote Influence in Group Decision-Making: The Changing Role of Justices' Peers on the Supreme Court," IZA Discussion Papers 12317, Institute of Labor Economics (IZA).
    17. Zhong, Weifeng & Chan, Julian & Ho, Kwan-Yuet & Lee, Kit, 2020. "Words Speak Louder Than Numbers: Estimating China’s COVID Severity with Deep Learning," Working Papers 10955, George Mason University, Mercatus Center.
    18. Świtała Maciej, 2024. "Predicting the Amount of Compensation for Harm Awarded by Courts Using Machine-Learning Algorithms," Central European Economic Journal, Sciendo, vol. 11(58), pages 214-232.
    19. Frederike Zufall & Rampei Kimura & Linyu Peng, 2021. "Towards a simple mathematical model for the legal concept of balancing of interests," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2021_09, Max Planck Institute for Research on Collective Goods, revised 19 Oct 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ajlecn:v:11:y:2020:i:2:p:00:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.