IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v7y2018i3ne287.html
   My bibliography  Save this article

The use of intelligent aggregator agents for advanced control of demand response

Author

Listed:
  • Tomi Medved
  • Gašper Artač
  • Andrej F. Gubina

Abstract

With the integration of distributed renewable energy sources (DRES) and active demand (e.g., units providing demand response, DR) in the distribution grid, the importance of monitoring the network conditions, managing the line congestions and observing the voltage levels is increasing. The distribution system operator (DSO) needs a mechanism, such as the traffic light system, to screen and approve the proposed operation schedules of the flexible active resources in the distribution grid. Their aggregated control will require the aggregators to employ advanced scheduling algorithms. The DR scheduling algorithms can be set to pursue various goals, for example, maximization of profit or cost reduction, grid support, or provision of the ancillary services. In the paper, we present a new DR scheduling approach suitable for the aggregation agent using approximate Q‐learning (AQL) algorithm scheduling. We present the AQL algorithm and the associated assumptions used in simulations on a real‐world low‐voltage (LV) grid model, comparing the AQL approach results to those of the economic scheduling and the energy scheduling approaches. Our assumption was that the AQL approach could outperform the energy or economic approaches as the AQL agent would be able to learn to avoid the scheduling penalties. The results of our research show that the aggregator agent using the economic approach shows the best economic performance, but causes the most schedule violations. The energy scheduling approach improves the network voltage profile but lowers the aggregator's profit. The AQL approach results in the agent's economic performance between the former two approaches with minimal schedule violations, confirming our research hypothesis. This article is categorized under: Concentrating Solar Power > Systems and Infrastructure Energy Systems Economics > Systems and Infrastructure Energy Infrastructure > Systems and Infrastructure Energy Efficiency > Economics and Policy

Suggested Citation

  • Tomi Medved & Gašper Artač & Andrej F. Gubina, 2018. "The use of intelligent aggregator agents for advanced control of demand response," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(3), May.
  • Handle: RePEc:bla:wireae:v:7:y:2018:i:3:n:e287
    DOI: 10.1002/wene.287
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.287
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang, Lei & Nagy, Zoltan & Goffin, Philippe & Schlueter, Arno, 2015. "Reinforcement learning for optimal control of low exergy buildings," Applied Energy, Elsevier, vol. 156(C), pages 577-586.
    2. Matthias D. Galus & Marina González Vayá & Thilo Krause & Göran Andersson, 2013. "The role of electric vehicles in smart grids," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(4), pages 384-400, July.
    3. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    4. Fabrizio Pilo & Gianni Celli & Emilio Ghiani & Gian Giuseppe Soma, 2013. "New electricity distribution network planning approaches for integrating renewable," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(2), pages 140-157, March.
    5. Sila Kiliccote & Daniel Olsen & Michael D. Sohn & Mary Ann Piette, 2016. "Characterization of demand response in the commercial, industrial, and residential sectors in the United States," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 288-304, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavlos S. Georgilakis, 2020. "Review of Computational Intelligence Methods for Local Energy Markets at the Power Distribution Level to Facilitate the Integration of Distributed Energy Resources: State-of-the-art and Future Researc," Energies, MDPI, vol. 13(1), pages 1-37, January.
    2. Luka Strezoski, 2023. "Distributed energy resource management systems—DERMS: State of the art and how to move forward," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    3. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    5. Nikola Krečar & Andrej F. Gubina, 2020. "Risk mitigation in the electricity market driven by new renewable energy sources," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    2. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    3. Newbery, David M. & Greve, Thomas, 2017. "The strategic robustness of oligopoly electricity market models," Energy Economics, Elsevier, vol. 68(C), pages 124-132.
    4. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    5. Jean-Luc Gaffard & Mauro Napoletano, 2012. "Agent-based models and economic policy," Post-Print hal-03461120, HAL.
    6. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    7. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    8. Soria, Jorge & Moya, Jorge & Mohazab, Amin, 2023. "Optimal mining in proof-of-work blockchain protocols," Finance Research Letters, Elsevier, vol. 53(C).
    9. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    10. Esmaeili Aliabadi, Danial & Kaya, Murat & Sahin, Guvenc, 2017. "Competition, risk and learning in electricity markets: An agent-based simulation study," Applied Energy, Elsevier, vol. 195(C), pages 1000-1011.
    11. Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
    12. Cristian Zambrano & Yris Olaya, 2017. "An agent-based simulation approach to congestion management for the Colombian electricity market," Annals of Operations Research, Springer, vol. 258(2), pages 217-236, November.
    13. Browne, Oliver & Poletti, Stephen & Young, David, 2015. "How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?," Energy Policy, Elsevier, vol. 87(C), pages 17-27.
    14. Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
    15. Li, Hongyan & Tesfatsion, Leigh, 2012. "Co-learning patterns as emergent market phenomena: An electricity market illustration," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 395-419.
    16. Vijayanarasimha Hindupur Pakka & Richard Mark Rylatt, 2016. "Design and Analysis of Electrical Distribution Networks and Balancing Markets in the UK: A New Framework with Applications," Energies, MDPI, vol. 9(2), pages 1-20, February.
    17. Mauro Napoletano, 2018. "A Short Walk on the Wild Side: Agent-Based Models and their Implications for Macroeconomic Analysis," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(3), pages 257-281.
    18. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    19. Gaivoronskaia, E. & Tsyplakov, A., 2018. "Using a Modified Erev-Roth Algorithm in an Agent-Based Electricity Market Model," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 55-83.
    20. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:7:y:2018:i:3:n:e287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.