IDEAS home Printed from https://ideas.repec.org/a/bla/sysdyn/v40y2024i1ne1761.html
   My bibliography  Save this article

Generative agent‐based modeling: an introduction and tutorial

Author

Listed:
  • Navid Ghaffarzadegan
  • Aritra Majumdar
  • Ross Williams
  • Niyousha Hosseinichimeh

Abstract

We discuss the emerging new opportunity for building feedback‐rich computational models of social systems using generative artificial intelligence. Referred to as generative agent‐based models (GABMs), such individual‐level models utilize large language models to represent human decision‐making in social settings. We provide a GABM case in which human behavior can be incorporated into simulation models by coupling a mechanistic model of human interactions with a pre‐trained large language model. This is achieved by introducing a simple GABM of social norm diffusion in an organization. For educational purposes, the model is intentionally kept simple. We examine a wide range of scenarios and the sensitivity of the results to several changes in the prompt. We hope the article and the model serve as a guide for building useful dynamic models of various social systems that include realistic human reasoning and decision‐making. © 2024 System Dynamics Society.

Suggested Citation

  • Navid Ghaffarzadegan & Aritra Majumdar & Ross Williams & Niyousha Hosseinichimeh, 2024. "Generative agent‐based modeling: an introduction and tutorial," System Dynamics Review, System Dynamics Society, vol. 40(1), January.
  • Handle: RePEc:bla:sysdyn:v:40:y:2024:i:1:n:e1761
    DOI: 10.1002/sdr.1761
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sdr.1761
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sdr.1761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:sysdyn:v:40:y:2024:i:1:n:e1761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/0883-7066 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.