IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v74y2020i3p397-419.html
   My bibliography  Save this article

Bayesian network models for incomplete and dynamic data

Author

Listed:
  • Marco Scutari

Abstract

Bayesian networks are a versatile and powerful tool to model complex phenomena and the interplay of their components in a probabilistically principled way. Moving beyond the comparatively simple case of completely observed, static data, which has received the most attention in the literature, in this paper, we will review how Bayesian networks can model dynamic data and data with incomplete observations. Such data are the norm at the forefront of research and in practical applications, and Bayesian networks are uniquely positioned to model them due to their explainability and interpretability.

Suggested Citation

  • Marco Scutari, 2020. "Bayesian network models for incomplete and dynamic data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 397-419, August.
  • Handle: RePEc:bla:stanee:v:74:y:2020:i:3:p:397-419
    DOI: 10.1111/stan.12197
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12197
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    2. Lauritzen, Steffen L., 1995. "The EM algorithm for graphical association models with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 19(2), pages 191-201, February.
    3. Mahdi Shafiee Kamalabad & Marco Grzegorczyk, 2018. "Improving nonhomogeneous dynamic Bayesian networks with sequentially coupled parameters," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 281-305, August.
    4. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    5. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    6. Gupta, Sumeet & Kim, Hee W., 2008. "Linking structural equation modeling to Bayesian networks: Decision support for customer retention in virtual communities," European Journal of Operational Research, Elsevier, vol. 190(3), pages 818-833, November.
    7. Scutari, Marco, 2010. "Learning Bayesian Networks with the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i03).
    8. Rosa F. Ropero & M. Julia Flores & Rafael Rumí & Pedro A. Aguilera, 2017. "Applications of hybrid dynamic Bayesian networks to water reservoir management," Environmetrics, John Wiley & Sons, Ltd., vol. 28(1), February.
    9. Cassola, Federico & Burlando, Massimiliano, 2012. "Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output," Applied Energy, Elsevier, vol. 99(C), pages 154-166.
    10. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ralf Brüggemann & Christian Kascha, 2017. "Directed Graphs and Variable Selection in Large Vector Autoregressive Models," Working Paper Series of the Department of Economics, University of Konstanz 2017-06, Department of Economics, University of Konstanz.
    2. Skripnikov, A. & Michailidis, G., 2019. "Joint estimation of multiple network Granger causal models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 120-133.
    3. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    4. Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
    5. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    6. Matthieu Droumaguet & Anders Warne & Tomasz Wozniak, 2015. "Granger Causality and Regime Inference in Bayesian Markov-Switching VARs," Department of Economics - Working Papers Series 1191, The University of Melbourne.
    7. Mitchell, James & Robertson, Donald & Wright, Stephen, 2016. "What univariate models tell us about multivariate macroeconomic models," EMF Research Papers 08, Economic Modelling and Forecasting Group.
    8. Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure," Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
    9. Lee, Namgil & Choi, Hyemi & Kim, Sung-Ho, 2016. "Bayes shrinkage estimation for high-dimensional VAR models with scale mixture of normal distributions for noise," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 250-276.
    10. Calvo-Pardo, Hector & Mancini, Tullio & Olmo, Jose, 2021. "Granger causality detection in high-dimensional systems using feedforward neural networks," International Journal of Forecasting, Elsevier, vol. 37(2), pages 920-940.
    11. Marek Jarociński & Bartosz Maćkowiak, 2017. "Granger Causal Priority and Choice of Variables in Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 319-329, May.
    12. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    13. Swamy, Vighneswara, 2020. "Macroeconomic transmission of Eurozone shocks to India—A mean-adjusted Bayesian VAR approach," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 126-150.
    14. Federico D'Amario & Milos Ciganovic, 2022. "Forecasting Cryptocurrencies Log-Returns: a LASSO-VAR and Sentiment Approach," Papers 2210.00883, arXiv.org.
    15. Tomasz Wozniak, 2016. "Rare Events and Risk Perception: Evidence from Fukushima Accident," Department of Economics - Working Papers Series 2021, The University of Melbourne.
    16. Caruso, Alberto & Reichlin, Lucrezia & Ricco, Giovanni, 2019. "Financial and fiscal interaction in the Euro Area crisis: This time was different," European Economic Review, Elsevier, vol. 119(C), pages 333-355.
    17. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    18. Pooyan Amir-Ahmadi & Christian Matthes & Mu-Chun Wang, 2020. "Choosing Prior Hyperparameters: With Applications to Time-Varying Parameter Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 124-136, January.
    19. Salzmann, Leonard, 2020. "The Impact of Uncertainty and Financial Shocks in Recessions and Booms," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224588, Verein für Socialpolitik / German Economic Association.
    20. Gary Koop & Dimitris Korobilis, 2019. "Forecasting with High‐Dimensional Panel VARs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(5), pages 937-959, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:74:y:2020:i:3:p:397-419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.