IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v63y2009i2p227-244.html
   My bibliography  Save this article

New Model‐assisted Estimators for the Distribution Function Using the Pseudo Empirical Likelihood Method

Author

Listed:
  • M. Rueda
  • J.F. Muñoz

Abstract

This paper proposes using a model‐assisted approach based on the pseudo empirical likelihood method to construct estimators for the finite population distribution function. It shows that the proposed sample‐based estimators are genuine distribution functions that exhibit several attractive features, such as the fact that they do not depend on unknown parameters, and good performance at any argument is expected to be obtained. Consequently, estimation of other measures, such as quantiles, is a problem that is efficiently addressed by the proposed methodology and applications in various areas are therefore derived. Simulation studies based upon real and artificial populations show that the proposed estimators perform better than the existing ones. A practical situation in which the proposed estimators can be applied is also described.

Suggested Citation

  • M. Rueda & J.F. Muñoz, 2009. "New Model‐assisted Estimators for the Distribution Function Using the Pseudo Empirical Likelihood Method," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(2), pages 227-244, May.
  • Handle: RePEc:bla:stanee:v:63:y:2009:i:2:p:227-244
    DOI: 10.1111/j.1467-9574.2009.00421.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9574.2009.00421.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9574.2009.00421.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Rueda & J. Muñoz & Y. Berger & A. Arcos & S. Martínez, 2007. "Pseudo empirical likelihood method in the presence of missing data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 65(3), pages 349-367, May.
    2. J. Chen, 2002. "Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys," Biometrika, Biometrika Trust, vol. 89(1), pages 230-237, March.
    3. Changbao Wu, 2003. "Optimal calibration estimators in survey sampling," Biometrika, Biometrika Trust, vol. 90(4), pages 937-951, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez, S. & Rueda, M. & Arcos, A. & Martínez, H. & Sánchez-Borrego, I., 2011. "Post-stratified calibration method for estimating quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 838-851, January.
    2. Muñoz, J.F. & Arcos, A. & Álvarez, E. & Rueda, M., 2014. "New ratio and difference estimators of the finite population distribution function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 102(C), pages 51-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaogang Duan & Guosheng Yin, 2017. "Ensemble Approaches to Estimating the Population Mean with Missing Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 899-917, December.
    2. Changbao Wu & Shixiao Zhang, 2019. "Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1082-1086, December.
    3. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    4. Changbao Wu & Wilson W. Lu, 2016. "Calibration Weighting Methods for Complex Surveys," International Statistical Review, International Statistical Institute, vol. 84(1), pages 79-98, April.
    5. Variyath A. M., 2013. "Empirical Likelihood Based Control Charts," Stochastics and Quality Control, De Gruyter, vol. 28(1), pages 37-44, October.
    6. Denis Devaud & Yves Tillé, 2019. "Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1033-1065, December.
    7. Wang, Qihua & Lai, Peng, 2011. "Empirical likelihood calibration estimation for the median treatment difference in observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1596-1609, April.
    8. Jae Kwang Kim & Mingue Park, 2010. "Calibration Estimation in Survey Sampling," International Statistical Review, International Statistical Institute, vol. 78(1), pages 21-39, April.
    9. Barranco-Chamorro, I. & Jiménez-Gamero, M.D. & Moreno-Rebollo, J.L. & Muñoz-Pichardo, J.M., 2012. "Case-deletion type diagnostics for calibration estimators in survey sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2219-2236.
    10. María Mar Rueda & Juan Muñoz, 2011. "Estimation of poverty measures with auxiliary information in sample surveys," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(3), pages 687-700, April.
    11. Nicholas-James Clavet & Jean-Yves Duclos & Bernard Fortin & Steeve Marchand, 2012. "Le Québec, 2004-2030 : une analyse de micro-simulation," CIRANO Project Reports 2012rp-16, CIRANO.
    12. Jan Pablo Burgard & Ralf Münnich & Martin Rupp, 2019. "A Generalized Calibration Approach Ensuring Coherent Estimates with Small Area Constraints," Research Papers in Economics 2019-10, University of Trier, Department of Economics.
    13. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    14. Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.
    15. Vahe Avagyan & Stijn Vansteelandt, 2021. "Stable inverse probability weighting estimation for longitudinal studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1046-1067, September.
    16. Dong Liang & Genevieve Nesslage & Michael Wilberg & Thomas Miller, 2017. "Bayesian Calibration of Blue Crab (Callinectes sapidus) Abundance Indices Based on Probability Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 481-497, December.
    17. Stearns, Matthew & Singh, Sarjinder, 2008. "On the estimation of the general parameter," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4253-4271, May.
    18. Denis Heng Yan Leung & Ken Yamada & Biao Zhang, 2015. "Enriching Surveys with Supplementary Data and its Application to Studying Wage Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 155-179, March.
    19. Jean-Francois Beaumont & Cynthia Bocci, 2008. "Another look at ridge calibration," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 5-20.
    20. Yves G. Berger, 2016. "Empirical Likelihood Inference for the Rao-Hartley-Cochran Sampling Design," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 721-735, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:63:y:2009:i:2:p:227-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.